纳芯微全新推出GaN相关产品NSD2621和NSG65N15K

发布者:EE小广播最新更新时间:2023-02-03 来源: EEWORLD关键字:纳芯微  GaN 手机看文章 扫描二维码
随时随地手机看文章

纳芯微全新推出GaN相关产品,包含GaN驱动NSD2621与集成化的Power Stage产品NSG65N15K,均可广泛适用于快充、储能、服务器电源等多种GaN应用场景。


image.png


其中,NSD2621是一颗高压半桥栅极驱动芯片,专门用于驱动E−mode(增强型)GaN 开关管;NSG65N15K是一颗集成化的Power Stage产品,内部集成了高压半桥驱动器和两颗650V耐压的GaN开关管。


image.png


NSD2621产品特性:


01. SW引脚耐压±700V

02. 峰值驱动电流2A/-4A

03. 驱动输出集成内部稳压器,驱动电压5V/5.5V/6V可选

04. 传输延时典型值30ns,上下管驱动传输延时匹配低于10ns

05. 内部可调死区时间20ns~100ns

06. SW允许共模瞬变高达150V/ns

07. 独立的SGND和PGND引脚

08. 集成欠压保护和过温保护

09. 工作温度范围-40°C~125°C

10. QFN15 4*4mm封装


image.png


NSD2621功能框图


1.NSD2621将隔离技术应用于高压半桥驱动,解决了GaN应用桥臂中点SW引脚的共模瞬变和负压尖峰问题。


在GaN应用中,为了减小开关损耗,其开关速度远高于传统的Si MOSFET, 桥臂中点的dv/dt达到了50V/ns甚至更高,这对驱动芯片SW引脚的共模瞬变抗扰度提出了极高的要求。同时,高速开关导致的di/dt与寄生电感会在SW引脚产生瞬态负压尖峰,导致驱动芯片发生闩锁甚至损坏。


NSD2621的上管驱动采用隔离技术进行设计,共模瞬变抗扰度高达150V/ns,并且可以耐受700V的负压,有效提升了系统的可靠性。


2. NSD2621内部集成稳压器,有利于保持栅极驱动信号幅值稳定,保护GaN开关管栅级免受过压应力的影响。


与传统的Si MOSFET器件不同,E-mode GaN器件的栅源电压要求极为严格,一般耐压最大值不超过7V。在开关电源中由于系统噪声的影响,驱动芯片VDD或者BST引脚容易引入高频干扰,会引起栅极驱动电压的过冲,从而导致GaN开关管损坏。


NSD2621上下管的驱动输出都集成了内部稳压器LDO,可以有效抑制VDD或BST引入的高频干扰,避免损坏GaN开关管。此外NSD2621可以灵活地选择6V/5.5V/5V不同驱动电压版本,适用于各类品牌的GaN开关管器件。


3. NSD2621超短传输延时有利于减小GaN死区损耗,并且内置可调死区时间功能,可有效避免发生桥臂直通。


GaN器件可以反向导通,其反向导通特性代替了普通MOSFET体二极管的续流作用,但在负载电流较大时其较高的反向导通压降会造成较大损耗,降低了系统效率。为了减小GaN反向导通损耗,应设置尽可能小的死区时间。死区时间的设置除了与电源的拓扑结构、控制方式有关,还受到驱动芯片传输延时的限制。


传统的高压半桥驱动芯片的上管驱动需要采用电平移位设计,为减小功耗多采用脉冲锁存式电平转换器,造成传输延时较长,无法满足GaN 应用的需求。NSD2621上管驱动采用纳芯微擅长的隔离技术进行设计,传输延时典型值仅30ns,并且上下管驱动的传输延时匹配在10ns以内,能够实现对GaN开关管设置几十纳秒以内的死区时间。同时,NSD2621内置20ns~100ns可调的硬件死区时间,可以有效避免发生桥臂直通的情况。


image.png


NSD2621内置死区时间测试波形


如上图所示,CH1为上管驱动输入 ,CH2为下管驱动输入,CH3为上管驱动输出,CH4为下管驱动输出。一开始当上管和下管驱动输入都为高电平时,为避免桥臂直通,上下管驱动输出都为低电平;当下管驱动输入变为低电平,经过30ns的传输延时和内置20ns的死区时间后,上管驱动输出变为高电平。


NSG65N15K产品特性


为进一步发挥GaN高频、高速的特性优势,纳芯微同时推出了集成化的Power Stage产品NSG65N15K,内部集成了半桥驱动器NSD2621和两颗耐压650V、导阻电阻150mΩ的GaN开关管,工作电流可达20A。NSG65N15K内部还集成了自举二极管,并且内置可调死区时间、欠压保护、过温保护功能,可以用于图腾柱PFC、ACF和LLC等半桥或全桥拓扑。


image.pngimage.png


NSG65N15K功能框图

  1. NSG65N15K用一颗器件取代驱动器和两颗开关管组成的半桥,有效减少元件数量和布板面积。



NSG65N15K是9*9mm的QFN封装,相比传统分立方案的两颗5*6mm DFN封装的GaN开关管加上一颗4*4mm QFN封装的高压半桥驱动,加上外围元件,总布板面积可以减小40%以上,从而有效提高电源的功率密度。同时,NSG65N15K的走线更方便PCB布局,有利于实现简洁快速的方案设计。


 2. NSG65N15K的合封设计有助于减小驱动和开关管之间的寄生电感,简化系统设计并提高可靠性。


如下图所示,传统的分立器件方案,会引入由于PCB走线造成的栅极环路电感Lg_pcb和由于GaN内部打线造成的共源极电感Lcs。

 

传统分立方案引入寄生电感


其中,栅极环路电感Lg_pcb会在栅极电压开通或关断过程产生振铃,如果振铃超出GaN的栅源电压范围,容易造成栅极击穿;并且在上管开通过程中,高dv/dt产生的米勒电流会在下管的Lg_pcb上产生正向压降,有可能造成GaN的栅极电压大于开启电压,从而误导通。而共源极电感Lcs造成的影响,主要是会限制GaN电流的di/dt,增加额外的开关损耗;此外,在GaN开通过程电流增大,由于di/dt会在Lcs上产生正向压降,降低了GaN的实际栅极电压,增大了开通损耗。


NSG65N15K减小杂散电感的影响


如上图所示,NSG65N15K通过将驱动器和GaN合封在一起,消除了共源极电感Lcs,并且将栅极回路电感Lg也降到最小,避免了杂散电感的影响,可以有效地提高系统效率与可靠性。


关键字:纳芯微  GaN 引用地址:纳芯微全新推出GaN相关产品NSD2621和NSG65N15K

上一篇:Wolfspeed 与采埃孚建立战略合作伙伴关系,共同发展未来碳化硅半导体项目 • Wolfspeed 将与
下一篇:碳化硅与氮化镓的未来将怎样共存?

推荐阅读最新更新时间:2024-11-10 11:13

,模拟芯片赛道上中国TI/ADI的后备军?
作为一家低调的国产芯片厂商,纳芯微公司已经做到了某些模拟细分市场的头部,同时还在瞄着国际大厂视为禁胔的领域。 2023年4月开始,A股半导体板块的持续暴跌让普通人都感受到了国产芯片厂商不好过,“缺货”被“过剩”代替的过程像极了过山车式。据说某国际大厂对客户说,国产什么价格,他们都跟。行业不景气时,血厚的国际大厂尚且艰难,何况积累不够的国产芯片厂商。 然而纳芯微却在此时,借着庆祝公司成立十周年暨上市一周年之际,大声说出自己“有机会去成为一家在全球范围内有竞争力的、甚至是有领导力的中国的芯片设计公司。” 3个标签+3个赛道 2013年,当时供职ADI公司研发部的王升杨和盛云从上海最繁华的新天地对面的顶极写字楼搬到浦东新
[半导体设计/制造]
<font color='red'>纳</font><font color='red'>芯</font><font color='red'>微</font>,模拟芯片赛道上中国TI/ADI的后备军?
大尺寸磊晶技术突破 GaN-on-Si基板破裂问题有解
近年来氮化镓(GaN)系列化合物半导体材料已被证实极具潜力应用于液晶显示器(LCD)之背光模组、光学储存系统、高频与大功率之微波电子元件等商业用途。然而,目前商品化的氮化镓系半导体光电元件均以蓝宝石(Sapphire)与碳化矽(SiC)基板为主,且重大基本专利掌握在日本、美国和德国厂商手中。有鉴于专利与材料种种问题,开发矽基氮化镓(GaN-on-Si)磊晶技术遂能摆脱关键原料、技术受制于美日的困境。   以矽半导体成长氮化镓磊晶薄膜不仅有低成本、大面积与高导电(热)基板等等的优势,更可进一步与高度成熟的矽半导体产业结合成光电积体电路(IC),配合晶粒制程技术包括蚀刻、黄光、金属电极镀膜、研磨及切割,在不同元件领域以横向分工、垂直
[模拟电子]
大尺寸磊晶技术突破 <font color='red'>GaN</font>-on-Si基板破裂问题有解
Nexperia联手Ricardo共同开发基于GaN的EV逆变器设计
分立器件、MOSFET器件、GaN FET器件及模拟和逻辑器件领域的生产专家 Nexperia 宣布与知名汽车工程咨询公司Ricardo合作,以研制基于氮化镓(GaN)技术的EV逆变器技术演示器。 GaN是这些应用的首选功率器件,因为GaN FETs使系统以更低的成本达到更高的效率、更好的热性能和更简单的开关拓扑。在汽车领域,这意味着车辆行驶里程更长,而这正是所有电动汽车消费者最关心的问题。现在,GaN即将取代基于硅的IGBT和SiC,成为插电式混合动力汽车或纯电动汽车中使用的牵引逆变器的首选技术。 Nexperia去年推出了一系列已获AEC-Q101认证的GaN FET器件,在这一高效技术领域为汽车设计师们提供成熟可靠的
[汽车电子]
推出高精度、具有共模磁场抑制的磁角度传感器NSM301x系列
让测量角度全开!纳芯微推出高精度、具有共模磁场抑制的磁角度传感器NSM301x系列 2022年5月10日- 纳芯微 全新推出的 霍尔效应角度传感器NSM301x系列芯片 是一种非接触式旋转角度传感器,可用于测量360°旋转角度,在-40°C 至125°C 的环境温度范围内提供精确测量角度,能在最广泛温度和磁场变化范围内保持高精度和稳定性。 该系列基于集成的平面霍尔阵列,将垂直于芯片表面的磁场分量转换为电压信号,经过放大和滤波后进行模数转换转换(ADC),随后将ADC 的输出作为DSP 的CORDIC 算法模块的输入进行处理,以计算磁场矢量的角度和大小,将两极磁铁的角度位置信息通过内部DSP 解算,转化成模拟电压、PWM、S
[传感器]
<font color='red'>纳</font><font color='red'>芯</font><font color='red'>微</font>推出高精度、具有共模磁场抑制的磁角度传感器NSM301x系列
第三代半导体材料:初出茅庐却要把前辈全面取代
第一代半导体材料是元素半导体的天下,而第二、三代半导体材料便成化合物的天下,这其中经历了什么故事?而我国憋足大招准备在第三半导体材料方面弯道超车是否现实?   本期《 趣科技 》就来讲讲半导体材料的故事,从第一、二代走过, 第三代半导体材料 将讲述怎样的未来。   第一代半导体材料 20世纪50年代,锗(Ge)站在光鲜的舞台上,应用于低压、低频、中功率晶体管以及光电探测器中,但锗半导体器件在耐高温与抗辐射方面却存在大大的短板,所以在60年代便把主导地位让给了硅。含量丰富、绝缘性好、提纯结晶简单,硅是至今应用最多的一种半导体材料主要应用于数据运算等领域。   第二代半导体材料 随着科技需求的日益增加,硅传输速度慢、功能单一的不足便暴
[嵌入式]
正式成为AEC汽车电子委员会成员
2024年1月18日,上海 ——近期, 纳芯微宣布正式加入AEC(Automotive Electronics Council)汽车电子委员会,成为AEC组件技术委员会(Component Technical Committee)成员。 AEC最初于1990年代由克莱斯勒、福特和通用汽车共同创建,其 目标在于建立车辆及其部件的通用资质和质量标准体系 ,例如其制定的AEC-Q100标准,现已成为业内权威的汽车芯片测试标准。如今,AEC已经发展成为包括数十家汽车行业OEM和零部件供应商在内的权威行业组织。由AEC主管的组件技术委员会专注于制定可靠、高质量的汽车电子组件标准,为推动整个行业的持续发展树立标杆。 当前,全球
[汽车电子]
<font color='red'>纳</font><font color='red'>芯</font><font color='red'>微</font>正式成为AEC汽车电子委员会成员
用集成驱动器优化GaN性能
导读: 将GaN FET与它们的驱动器集成在一起可以改进开关性能,并且能够简化基于GaN的功率级设计。 氮化镓 (GaN) 晶体管的开关速度比硅MOSFET快很多,从而有可能实现更低的开关损耗。然而,当压摆率很高时,特定的封装类型会限制GaN FET的开关性能。将GaN FET与驱动器集成在一个封装内可以减少寄生电感,并且优化开关性能。集成驱动器还可以实现保护功能 简介 氮化镓 (GaN) 晶体管的开关性能要优于硅MOSFET,因为在同等导通电阻的情况下,氮化镓 (GaN) 晶体管的终端电容较低,并避免了体二极管所导致的反向恢复损耗。正是由于这些特性,GaN FET可以实现更高的开关频率,从而在保持合理开关损耗的同时,提升功率
[电源管理]
用集成驱动器优化<font color='red'>GaN</font>性能
听Nexperia谈GaN的计划
Dilder Chowdhury在半导体领域工作超过24年,开始他在Nexperia的创新团队,然后转向市场营销,并担任Power GaN技术的架构师。他目前的职位是Power GaN 技术战略营销总监。 他的工作涵盖了从器件物理到封装和最终产品的方方面面,Nexperia研究并结合了材料、封装、产品和模块的所有价值。 以下是来自Dilder的采访 Nexperia是GaN的开拓者,不仅在产品方面,而且在生产方面也是如此。你能告诉我们怎么做到的吗? Dilder Chowdhury:我们的生产首先要确保可靠性;我们是一家专注汽车市场的公司,因此无论我们引进什么新技术,我们都需要保持最高水平的质量,绝不妥协。我们是一
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved