功率器件热设计及散热计算

最新更新时间:2007-02-13来源: 电子设计应用关键字:温度  结温  热阻  封装 手机看文章 扫描二维码
随时随地手机看文章
引言

当前,电子设备的主要失效形式就是热失效。据统计,电子设备的失效有55%是温度超过规定值引起的,随着温度的增加,电子设备的失效率呈指数增长。所以,功率器件热设计是电子设备结构设计中不可忽略的一个环节,直接决定了产品的成功与否,良好的热设计是保证设备运行稳定可靠的基础。

功率器件热性能的主要参数

功率器件受到的热应力可来自器件内部,也可来自器件外部。若器件的散热能力有限,则功率的耗散就会造成器件内部芯片有源区温度上升及结温升高,使得器件可靠性降低,无法安全工作。表征功率器件热能力的参数主要有结温和热阻。

器件的有源区可以是结型器件(如晶体管)的PN结区、场效应器件的沟道区,也可以是集成电路的扩散电阻或薄膜电阻等。当结温Tj高于周围环境温度Ta时,热量通过温差形成扩散热流,由芯片通过管壳向外散发,散发出的热量随着温差(Tj-Ta)的增大而增大。为了保证器件能够长期正常工作,必须规定一个最高允许结温 Tj max。Tj max的大小是根据器件的芯片材料、封装材料和可靠性要求确定的。

功率器件的散热能力通常用热阻表征,记为Rt,热阻越大,则散热能力越差。热阻又分为内热阻和外热阻:内热阻是器件自身固有的热阻,与管芯、外壳材料的导热率、厚度和截面积以及加工工艺等有关;外热阻则与管壳封装的形式有关。一般来说,管壳面积越大,则外热阻越小。金属管壳的外热阻明显低于塑封管壳的外热阻。

当功率器件的功率耗散达到一定程度时,器件的结温升高,系统的可靠性降低,为了提高可靠性,应进行功率器件的热设计。

功率器件热设计

功率器件热设计主要是防止器件出现过热或温度交变引起的热失效,可分为器件内部芯片的热设计、封装的热设计和管壳的热设计以及功率器件实际使用中的热设计。

对于一般的功率器件,只需要考虑器件内部、封装和管壳的热设计,而当功耗较大时,则需要安装合适的散热器,通过其有效散热,保证器件结温在安全结温之内正常可靠的工作。
  
散热计算

最常用的散热方法是将功率器件安装在散热器上,利用散热器将热量散到周围空间,必要时再加上散热风扇,以一定的风速加强散热。在某些大型设备的功率器件上还采用流动冷水冷却板,它有更好的散热效果。散热计算就是在一定的工作条件下,通过计算来确定合适的散热措施及散热器。

热量在传递过程中有一定热阻。由器件管芯传到器件底部的热阻为Rjc,器件底部与散热器之间的热阻为Rcs,散热器将热量散到周围空间的热阻为Rsa,总的热阻Rja=Rjc+Rcs+Rsa。若器件的最大功率损耗为Pd,并已知器件允许的结温为Tj、环境温度为Ta,可以按下式求出允许的总热阻Rja。

Rja ≤(Tj-Ta)/Pd

则计算最大允许的散热器到环境温度的热阻Rsa为:

Rsa ≤(Tj-Ta)/Pd-(Rjc+Rcs)

为设计考虑,一般设Tj为125℃。在较坏的环境温度情况下,一般设Ta=40℃~60℃。Rjc的大小与管芯的尺寸和封装结构有关,一般可以从器件的数据资料中找到。Rcs的大小与安装技术及器件的封装有关。如果器件采用导热油脂或导热垫后,再与散热器安装,其Rcs典型值为0.1℃/W~0.2℃/W;若器件底面不绝缘,需要另外加云母片绝缘,则其Rcs可达1℃/W。Pd为实际的最大损耗功率,可根据不同器件的工作条件计算而得。这样,Rsa可以计算出来,根据计算的Rsa值可选合适的散热器了。

计算实例

一功率运算放大器PA02作低频功放,器件为8引脚TO-3金属外壳封装。器件工作条件如下:工作电压Vs为18V,负载阻抗RL为4剑绷魈跫鹿ぷ髌德士纱?kHz,环境温度设为40℃,采用自然冷却。

查PA02器件资料可知:静态电流Iq典型值为27mA,最大值为40mA;器件的Rjc(从管芯到外壳)典型值为2.4℃/W,最大值为2.6℃/W。

器件的功耗为Pd:

Pd=Pdq+Pdout

式中Pdq为器件内部电路的功耗,Pdout为输出功率的功耗。Pdq=Iq(Vs+|-Vs|),

Pdout=Vs2/(4 RL),代入上式

Pd=Iq(Vs+|-Vs|)+Vs2/(4 RL)
=0.037×(18+18)+182/(4×4)
 =21.6 W

式中,静态电流取37mA。

散热器热阻Rsa计算:Rsa ≤(Tj-Ta)/Pd-(Rjc+Rcs)

为留有余量,Tj设为125℃,Ta设为40℃,Rjc取最大值(Rjc=2.6℃/W),Rcs取0.2℃/W(PA02直接安装在散热器上,中间有导热油脂)。将上述数据代入公式得:

Rsa≤(125-40)/21.6-(2.6+0.2)≤1.135℃/W

HSO4在自然对流时热阻为0.95℃/W,可满足散热要求。
  
散热器的选取

散热器一般是标准件,也可提供型材,由用户根据要求切割成一定长度而制成非标准的散热器。散热器的表面处理有电泳涂漆或黑色氧极化处理,其目的是提高散热效率及绝缘性能。在自然冷却下可提高10%~15%,在通风冷却下可提高3%,电泳涂漆可耐压500V~800V。散热器厂家对不同型号的散热器给出热阻值或给出有关曲线,并且给出在不同散热条件下的不同热阻值。

功率器件使用散热器是要控制功率器件的温度,尤其是结温Tj,使其低于功率器件正常工作的安全结温,从而提高功率器件的可靠性。常规散热器趋向标准化、系列化、通用化,而新产品则向低热阻、多功能、体积小、质量轻、适用于自动化生产与安装等方向发展。合理地选用、设计散热器,能有效降低功率器件的结温,提高功率器件的可靠性。

各种功率器件的内热阻不同,安装散热器时由于接触面和安装力矩的不同,会导致功率器件与散热器之间的接触热阻不同。选择散热器的主要依据是散热器热阻Rtf。在不同的环境条件下,功率器件的散热情况也不同。因此,选择合适的散热器还要考虑环境因素、散热器与功率器件的匹配情况以及整个电子设备的体积、质量等因素。

首先根据功率器件正常工作时的性能参数和环境参数,计算功率器件结温是否工作在安全结温之内,判断是否需要安装散热器,如需安装则计算相应的散热器热阻,初选一散热器;重新计算功率器件结温,判断功率器件结温是否在安全结温范围之内,从而判断所选散热器是否满足要求;对于符合要求的散热器,应根据实际工程需要进行优化设计。

结语

通过功率器件发热原理的分析和散热计算,可以指导设计散热方式和散热器的选择,保证了功率器件工作在安全的温度范围内,减少了质量问题,提高了电子产品的可靠性。电子设备的可靠性还同元器件、结构、装配、工艺、加工质量等有关,在实际工程应用上,还应通过各种试验取得反馈数据来完善设计,进一步提高电子设备的可靠性。
  
参考文献


1 王建石编. 电子设备结构设计标准手册. 北京:中国标准出版社,2001,10

关键字:温度  结温  热阻  封装 编辑: 引用地址:功率器件热设计及散热计算

上一篇:微机控制的大功率充电电源的研制
下一篇:多路独立供电的半桥变换器的设计

推荐阅读最新更新时间:2023-10-18 14:34

英飞凌推出XMC7000系列微控制器,可满足工业级应用及更大工作温度范围的要求
英飞凌推出XMC7000系列微控制器,可满足工业级应用对更高性能、更大内存、更先进的外设及更大工作温度范围的要求 【2022年11月24日,德国慕尼黑讯】 英飞凌科技股份公司( 在2022慕尼黑国际电子元器件博览会上推出了用于工业驱动、电动汽车(EV)充电、电动两轮车、机器人等先进工业级应用的XMC7000系列微控制器(MCU) 。XMC7000系列微控制器包括基于主频高达350-MHz 的32位Arm® Cortex®-M7处理器的单核与双核产品,以及搭配主频为100-MHz 的32位Arm® Cortex®-M0+ 处理器提供支持,且配置了容量高达8MB的嵌入式闪存和容量为1MB的片上静态随机存取存储器(SRAM)。该系列
[工业控制]
英飞凌推出XMC7000系列微控制器,可满足工业级应用及更大工作<font color='red'>温度</font>范围的要求
基于FPGA的电子系统柔性设计
1 引 言 电子产品的多样性,小批量和周期性短是21世纪制造业的鲜明特征,对设计工作提出了更新更高的要求。如何在产品改进或开发新产品时减少重设计和修改设计的工作量,缩短设计周期、提高产品可靠性是制造行业面临的重要课题。电子系统的柔性设计是采用电路结构重置技术,将多个针对不同功能要求设计好的配置文件分别存放在不同的地址空间,根据不同的外部命令,使所需的配置文件在线下载到具有重置功能的电子器件(如FPGA)中,以时分复用的形式分别完成各个功能。这种设计方式可以极大地提高电路系统的硬件功能灵活性。同一电路系统在没有发生任何外在结构上的改变时,通过来自外部不同的命令信号,电路系统的结构和功能将在瞬间发生改变,从而使单一电路系统具有许多不
[应用]
英飞凌新品:采用SOT-223封装的CoolMOS™ P7
英飞凌科技股份公司(FSE: IFX / OTCQX: IFNNY)通过SOT-223封装进一步壮大新近推出的CoolMOS™ P7产品阵容。全新器件是作为DPAK简易替换器件而开发的,完全兼容典型的DPAK封装。全新CoolMOS P7平台与SOT-223封装相结合,使其非常适于智能手机充电器、笔记本电脑适配器 、电视电源 和 照明等诸多应用。下面就随电源管理小编一起来了解一下相关内容吧。 全新CoolMOS™ P7专为满足小功率SMPS市场的需求而设计,具备出色的性能和易用性,而设计人员可以充分利用其经过改进的外形。该器件采用具有价格竞争力的超结技术,可为客户削减物料成本(BOM)。 SOT-223封装是DPAK封装的经济
[电源管理]
摒弃NTC电热调节器,使用模拟温度传感器
NTC电热调节器和模拟温度传感器是用于大多数电子应用的两款常用温度检测解决方案。决定哪种技术最为适合于您的应用是一项艰难的任务。不过,我会告诉您一些应该抛弃NTC电热调节器而要使用模拟温度传感器的原因。   图1显示了输出电压与温度的比较情况。请注意,NTC电热调节器要求使用一个电阻网络,以帮助线性化其输出。这是因为,它们的电阻vs温度特性呈指数变化。与NTC电热调节器不同,模拟温度传感器不要求使用任何额外元件,因为它们拥有虚拟线性输出电压。例如,在-50°C到150°C的器件完全工作温度范围,德州仪器的LMT87模拟温度传感器为整个器件提供虚拟线性输出电压。   从图1所示3条NTC电热调节器曲线可以看出,您可以通过
[模拟电子]
摒弃NTC电热调节器,使用模拟<font color='red'>温度</font>传感器
基于现场总线的智能仪表温度控制系统的设计
1 总线智能氧量分析仪结构 基于can总线的智能氧量分析仪以单片机c8051f040为中央 控制器 ,系统扩展的外围电路及接口电路数量少,系统的可靠性及稳定性较高,系统功能扩展及软硬件升级比较方便。系统的硬件结构见图1。外围硬件电路主要包括六部分:系统校正、数据采集、温度控制、日历时钟、带触摸屏的液晶显示、can总线接口。 图1 系统硬件结构 带触摸屏的液晶显示器提供了一个强有力的人机接口,有关信号、可调参数都能在上面显示和修改。本系统采用稳压电源,具有电源电压的适用范围大、抗干扰能力强等优点。主机是一种以单片机为基础的智能仪表,所有的运算、处理和控制都由软件完成。氧电势、温度信号的输人转换和电流输出的转换采
[单片机]
基于现场总线的智能仪表<font color='red'>温度</font>控制系统的设计
一种新型的补偿式温度巡检电路设计实现(二)
3 巡检功能机理 由图1可以看出,当有N 个被测温度传感器时,传统的温度巡检电路需要N个恒流源。 本文在实现了导线压降补偿提高测量精度的基础上,还提出了新型的巡检电路。 图3是以四个温度传感器为1组进行测量的示意图。 Rx1~Rx4为同一组内的四个温度传感器的电阻值,它们共享一个恒流源和一组采集电路。 在t1时刻时,使A1A0=00,这样第1组模拟开关闭合,Rx1被接入采集电路,其它的待测温度传感器与采集电路脱离。恒流源I经Rx1和模拟开关后送到采集电路,恒流源虽然通过G-N 连接到其它电阻的下端,但由于没有形成闭合路径,因此流过Rx1的电流仍为I.按照上节导线压降补偿的测量和分析方法,得到:     上式中Vo(t1)为Vo
[电源管理]
一种新型的补偿式<font color='red'>温度</font>巡检电路设计实现(二)
增强加热可在较低温度下完成无铅BGA返工
新型APR-5000-XLS阵列封装返工系统加热方式还可现场升级 OK International (OK公司) 宣布其APR-5000-XLS阵列封装返工系统的回流能力得到加强。高精度加热系统控制软件能保证狭窄的无铅焊工艺窗口使其不超过极限高温,从而保护零部件、其它焊点以及防止PCB板或者RJ45s 类的连接器因高温发生变形。 OK公司市场发展部经理Paul Wood说:“因为BGA的无铅焊接温度已经非常接近IC 供应商所允许的250-260°C的极限温度,我们非常需要新的加热软件。OK公司就战胜了这一挑战。它可以允许操作者不需要经过特殊的培训,在很短的时间内在很窄的无铅焊接温度范围内顺利完成所需要的焊接。”
[新品]
意法半导体的低温漂、高准确度运放将工作温度提高到 175°C
增强耐变性,延长使用寿命,适合汽车和工业应用 2023 年 9 月13 日,中国 —— 意法半导体的 TSZ181H1车规算放大器和TSZ181H1 车规双运算放大器具有高准确度和稳定性,工作温度范围-40°C 至 175°C。最高工作温度的提升使其使用于恶劣的工作环境和长时间运行的工况。 这两款运放的输入失调电压极低,在25°C 时典型值为 3.5μV;输入偏置电流在25°C 时典型值为 30pA。这两个参数的温漂极低,在 25°C 时,最大输入失调电压为 70μV,在整个温度范围内额定值为 100μV;在25°C 时,最大输入偏置电流额定值200pA,在整个温度范围内为 225pA。 TSZ181H1 和 T
[模拟电子]
意法半导体的低温漂、高准确度运放将工作<font color='red'>温度</font>提高到 175°C
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved