第四代SIMPLE SWITCHER开关稳压器产品介绍

最新更新时间:2007-10-15来源: 互联网关键字:线性  同步  整流  输出 手机看文章 扫描二维码
随时随地手机看文章

美国国家半导体推出了除”简单易用”外,还能提供多种输出电流的第四代SIMPLE SWITCHER 产品组。本产品组具有良好的功能及设计自由度,支持设计工程师们使用它们设计出所需要的尺寸、EMI及输入精确度的最佳电源装置,同时,通过WEBENCH 可以缩短产品上市时间。

背景

驱动电路需要电源IC。为了选择电源IC,电源设计工程师们一般选择输入电压、输出电压和输出电流后根据热效率来考虑选择线性稳压器还是选择开关稳压器。

如果电路比较简单,而且对于效率没有要求时,可以选择线性稳压器,而对于效率高并且需要具有高密度电源的空间时应选择开关稳压器。但是,由于线性稳压器在低压情况下存在过度发热及效率低等问题,因此开始逐渐向开关稳压器转移。

同时,开关稳压器在低输出电压,高效率的要求下发展出采用同步整流方式的开关稳压器,所以,电路变得复杂,设计上也出现了一些问题。尤其是在机器的小型化过程中,电源电路也要求节省空间,包括周边产品在内,为了实现小型化,开关频率也向高频率方向发展。

为了继续高频率化以及芯片的小型化并且能够更简单地进行设计,电源集成电路的制造商推出了内置FET的开关稳压器。同时,因周边部件的内置,也保证了产品的小型化,设计成专用的FET内装,设计容易了许多。也就是说小型化及设计容易方面达到了两全其美的效果。

同时,又出现了叫做内装同步整流开关FET的SIMPLE SWITCHER—电源IC,所以,很容易使用能支持从50KHz到 1MHz之间的高速开关频率的同步整流型开关稳压器。

何为SIMPLE SWITCHER

SIMPLE SWITCHER是美国国家半导体所开发的新概念转换器。SIMPLE SWITCHER可分为, 工作在52KHz的第一代, 工作在150KHz的第二代, 工作在260KHz并且具有同步引脚的第三代,能支持到1MHz,并且在所有产品中都有同步引脚的第四代等。
 
第四代SIMPLE SWITCHER是在输入为6V~45V/75V下,输出电流达到0.5A, 1.5A, 3A的产品。计划在日后生产出可达到支持5A的产品时,如果有多通道负荷出现也能全部承受。当数字设备中需要多个的电源器件全都嵌在一个芯片中时,所支持的电源通道也需要那么多。

之所以提高开关频率,是因为可以缩小周边元件的尺寸。在同样的3A输出中,开关的频率从50kHz提高到 1MHz时,线圈的大小从100uH缩小到 10uH。这样,器件的尺寸将大幅下降,电源电路的空间也明显地减少。但是,由于无法再提高门驱动的电流量,所以频率范围将无法无限提高。同时,在提高频率后噪音特性变坏。

SIMPLE SWITCHER是美国国家半导体的注册商标,是将在开关稳压器电路中必需的FET及 PWM单元集成在一个芯片里的电源集成电路。这两个单元分离后称为控制器。过去,因为需要使用其它的外围部件,电路变得很复杂。而在采用SIMPLE SWITCHER后,只需要选择适合于所需用途的器件即可实现。

美国国家半导体所提供的在线仿真提供了SIMPLE SWITCHER的选择及电路的构成,由于从部件选择到参考电路都能够提供,所以即使非电源专业工程师们也可以按其应用要求设计电源电路。

SIMPLE SWITCHER 特征

美国国家半导体公司从1989年开始,以SIMPLE SWITCHER产品的性能和封装、电压及电流多样性为重点持续进行了多样化工作,现能提供500多种丰富的SIMPLE SWITCHER产品。所有的产品可以通过在线 WEBENCH 电源供应系统设计软件来方便快捷的使用。美国国家半导体的在线设计环境提供SIMPLE SWITCHER产品组能用于DC-DC转换器设计的完整的设计环境。

最近发表的6个产品属于新的SIMPLE SWITCHER稳压器系列

上述 6 款芯片是 SIMPLE SWITCHER 稳压器系列的最新型号产品。0.5A 的 LM5574、1.5A 的 LM5575 及 3.0A 的 LM5576 等三款降压稳压器都有极广阔的输入电压范围 (6V 至 75V),而开关频率都可调节,范围则介于 50kHz 与 500kHz 之间。0.5A 的 LM25574、1.5A 的 LM25575 及 3.0A 的 LM25576 等三款降压稳压器都有广阔的输入电压范围 (6V 至 42V),而开关频率都可调节,范围则介于 50kHz 与 1MHz 之间。

LM5574 芯片内置 75V、750 m-Ohm 的 N 通道 MOSFET,而 LM25574 芯片则内置 42V 的 N 通道 MOSFET,这两款芯片都采用 16 引脚的 TSSOP 封装。LM5575 芯片内置 75V、330 m-Ohm 的 N 通道 MOSFET,而 LM25575 芯片则内置 42V 的 N 通道 MOSFET,这两款芯片都采用有辅助散热焊盘的 16 引脚 TSSOP 封装。LM5576 芯片内置 75V、170 m-Ohm 的 N 通道 MOSFET,而 LM25576 芯片则内置 42V 的 N 通道 MOSFET,这两款芯片都采用有辅助散热焊盘的 20 引脚 TSSOP 封装。
 
特别是新型SIMPLE SWITCHER采用的的模拟电流模式控制技术 (ECM) 功能通过输入输出压差模拟电感电流以达到精确控制的目的。所以能提供比其他公司产品更低更精确的1.225V输出电压。是没有ECM功能就不能实现的性能。

一般的,在大的输入输出压差条件下,如果要降低输出电压就必须降低频率,但是美国国家半导体的ECM功能可以实现提高频率且降低输出电压。

电路分析


       图1 SIMPLE SWITCHER的产品及略图

从图1的电路(LM5576标准)中各器件的功能来看,

C1: 稳压器电源电压,为了减小输入电源的阻抗,优质的输入电容器(Capacitor)用于VIN 端的纹波电压控制,在工作期间提供大部分的开关电流。打开降压稳压器,进入VIN 端的电流从电感器电流波形的低值上升至最高值。然后,关闭状态下下降至谷底。工作期间内, VIN的平均电流为负载电流。输入电容(Capacitance)由RMS额定电流和最大的纹波电压来选择。建议采用低等效串联电阻(ESR) 陶瓷电容器为了实现电容公差和电压效果,会使用2.2μF/100V 陶瓷电容器。

C2: 输出电容,C2消除电感器纹波,提供过载状态的放电电源。为了这个设计,会选择22μF陶瓷电容器。陶瓷电容器会提供低等效串联电阻(ESR),降低输出纹波电压和噪音干扰。

D1:所有LM5576 应用要求使用肖特基类型的续流二极管。超高速二极管不会被推荐,因为反向恢复电流会引起对IC的破坏。理想的反向恢复特性和低正向压降是对于降压稳压器高输入电压和低输出应用特别重要的二极管特性。反向恢复特性在降压开关被打开时决定浪涌电流在各周期能维持多久。

肖特基二极管的反向恢复特点,可将在各周期的导通(turn on)期间发生的降压开关中瞬间尖峰电流降低为最小。其结果是降压开关变换引起的损失在使用肖特基二极管的时候大大减少。

L1: 电感器值由工作频率、负荷电流、纹波电流、最小及最大输入电压(VIN(min), VIN(max))值决定。在连续导通模式(CCM)中,最大的纹波电流IRIPPLE应小于最小负荷电流的2倍。这里31uH程度较适合。

WEBENCH设计程序

WEBENCH设计程序是美国国家半导体为了用户所提供的在线设计程序。任何需要电源电路的人都可以在线进行设计并获得想要的结果。其最大的优点就是使用方便。在新版本中,包括SIMPLE SWITCHER在内,可以设计的产品数量已经有了大幅度地增长。

想要设计含有SIMPLE SWITCHER的电源电路时,

1)设计人员在WEBENCH上键入输入电压、输出电压/电流等。
2)如果出现最合理的部件时,即可选择。
3)利用键入功能详细地输入热特性、尺寸、效率等内容。
4)输出已经考虑好电特性的最佳电路
5)输出已经考虑好电特性的板设计图。
6)通过WebSIM进行模拟试验。
7)订制在线原型。
8)48小时内,能从公司收到原型

应用

SIMPLE SWITCHER是以为POL稳压器生成低电压分散通道或如同运算放大器的偏置电压、内装程序、内存及具有高输入电压的产品为目标。

关键字:线性  同步  整流  输出 编辑:冀凯 引用地址:第四代SIMPLE SWITCHER开关稳压器产品介绍

上一篇:第四代SIMPLE SWITCHER开关稳压器产品介绍
下一篇:TI 推出面向手持式设备的双电压电平200mA LDO

推荐阅读最新更新时间:2023-10-18 14:39

针对无源接口滤波与线性有源滤波器设计的综合解决方案
几乎每个电子系统都有滤波器,无论是无源的,有源的还是数字的。工程师通常开始在心里就决定了滤波器的频率响应和类型。对于简单的无源滤波,供电电压去耦可能就足够了,但是对于更加复杂的滤波则需要考虑更多。为了得到更好的综合解决方案和降低成本,在项目开始时制定出额外的计划可以减少花费和开发时间,并且提高性能。   从设计规范阶段开始,工程师就应该明确每个滤波器所需要的频率响应,振幅比频率的斜率,以及是低通还是高通滤波器,是带通还是陷波滤波。可能需要限制滤波器溢出现有的电源电压;这是特别重要的,例如系统要在像MP3播放器一样的便携式应用中使用低电压 电池 的情况。当电源电压,频率类型和响应决定后,下一步就是将响应曲线所需要的特征转换为标准响
[工业控制]
针对无源接口滤波与<font color='red'>线性</font>有源滤波器设计的综合解决方案
基于STM32的大扭矩永磁同步电机驱动系统
引言   大扭矩永磁同步电机直接驱动由于去掉了复杂的机械传动机构,从而消除了机械结构带来的效率低、维护频繁、噪声与转动惯量大等不利因素,具有效率高、振动与噪声小、精度高、响应快、使用维修方便等一系列突出优点 .近年来,随着电力电子技术、永磁材料、电机设计与制造技术、传感技术、控制理论等的发展,大扭矩永磁同步电机在数控机床、矿山机械、港口机械等高性能系统中得到了越来越广泛的应用 .   交流电机控制系统广泛采用单片机、DSP、FPGA为控制系统核心。STM32 是一种基于ARM 公司Cortex-M3 内核的新型32 位闪存微控制器,采用了高性能、高代码密度的Thumb-2 指令集和紧耦合嵌套向量中断控制器,拥有丰富的
[单片机]
基于STM32的大扭矩永磁<font color='red'>同步</font>电机驱动系统
AT89C51单片机高速串行输出口设计
    摘要: 介绍使用AT89C51单片机扩展高速串行同步移位输出口的方法,给出基于分立TTL元器件和可编程逻辑器件PLD两种电路的实现方案,在LED点阵显示屏系统中已得到应用。     关键词: 串行口 单片机 可编程逻辑器件 AT89C51(与MCS-51兼容)单片机的串行口在方式0工作状态下,使用移位寄存器芯片可以扩展多个8位并行I/O口。在LED点阵显示屏应用系统中,一般都采用数据同步移位输出方式,并使用移位寄存器芯片(如74LS595)扩展并行I/O口驱动LED点阵显示。LED点阵显示采用扫描方式,为不产生闪烁感,每秒需要传送50屏点阵显示数据,因此有大量的数据要通过同步移位的方式送到显示驱动电
[电源管理]
反激式变换器输出端电容的原理分析及计算方法
以反激式变换器的实例为大家讲解关于输出端电容的计算,此实例为RCC拓扑结构,输出功率6W,输出电压5V,输出电压1.2A。在最小输入电压下,占空比为0.5,工作频率100KHz。(为了数据简单取频率为整数) 原理分析: 第一:在反激式(RCC拓扑结构)中,输出端的电容是用来存储能量的。当开关管导通时,输出端电容给负责供电。那么我们可以从电容的储能入手。 第二:在AC-DC的电源模块中我们一般使用电解电容做储能器件的,不仅仅要从电容的储能来入手,那还要从电容的EMR入手来计算。 第一种方案: 1、电容的供电纹波电流 在输出电容的正极有三个电流:一个是输出绕组供电的电流,为交电流(变化);一个是流过给负载的电流
[电源管理]
反激式变换器<font color='red'>输出</font>端电容的原理分析及计算方法
嵌入式系统中串口通信帧的同步方法
引 言 串口通信是日前单片机和DSP等嵌入式系统之间,以及嵌入式系统与PC机或无线模块之间的一种非常重要且普遍使用的通信方式。在嵌入式系统的硬件结构中,通常只有一个8位或16位的CPU,不仅要完成主流程的工作,同时还要处理随时发生的各种中断,因而嵌入式系统中的串口通信程序设计与PC机有很大的不同。若嵌入式系统中.中断服务子程序在系统运行过程中占用了较多的时间,就有可能在中断眼务子程序正运行时,又产生一个同类型或其他类型的中断,从而造成主程序得不到执行或后续中断数据丢失。所以,嵌入式系统中的串口通信虽然看似简单,但其中仍有许多问题值得研究,例如串口通信过程中的帧同步问题。本文针对该问题给出了逐次比较、基于FIFO队列和基于状态
[工业控制]
STM32CubeMX系列 | PWM输出
1. PWM简介 脉冲宽度调制(PWM,Pulse Width Modulation)简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。即对脉冲宽度的控制,PWM原理如下图示: 图中我们假定定时器是工作在向上计数PWM模式,且当CNT CCRx时输出0,当CNT = CCRx时输出1,那么就可以得到如上的PWM示意图:当CNT CCRx时,IO口输出低电平;当CNT = CCRx时,IO口输出高电平;当CNT值达到ARR的时候,重新归零,然后重新向上计数,依次循环。改变CCRx的值就可以改变PWM输出的占空比,改变ARR的值就可以改变PWM输出的频率 输出模式有两种:PWM1和PWM2 输
[单片机]
如何选择输出段元件最大化DC-DC同步降压转换器性能
  简介   开关电源如今在行业中的应用非常广泛,为多种终端应用提供高能效方案。它们常用于计算机、电动工具、电视、多媒体平板电脑、智能手机、汽车及其它不计其数电子设备的电源及电池充电电路。   消费类电子行业应用最普及的转换器之一是DC-DC降压(step-down,亦称buck)转换器。   简而言之,同步降压转换器用于将电压从较高的电平降至较低的电平。随着业界转向更高性能的平台,电源转换器的能效成为设计的一项关键考虑因素。因此,重要的是理解同步降压转换器的基础知识,以及怎样恰当地选择电路元件。   同步降压转换器基础   同步降压转换器的概念简单,它产生低于输入电压的稳压电压,可以提供大电流,同时将功率损耗降至最低。   
[电源管理]
如何选择<font color='red'>输出</font>段元件最大化DC-DC<font color='red'>同步</font>降压转换器性能
Maxim推出业内集成度最高的工业输出信号调理器
   Maxim 推出工业模拟输出 信号调理器 MAX15500 / MAX15501 。器件能够为工业市场提供比竞争器件更多的功能、更高的集成度以及更小的整体方案尺寸。器件具有空前的集成度:可编程电压输出放大器和电流输出放大器;直接从24V现场电源产生±10V和4至20mA输出;±35V电路保护;全面的故障指示;灵活的菊链连接。    MAX15500 / MAX15501 节省了4至20mA和/或双极性/单极性电压输出应用的电路板空间和设计时间。器件可理想用于PLC (可编程逻辑控制器)模拟输出、分布式I/O、嵌入式系统以及工业控制和自动化系统。器件高度的集成特性提高了设计灵活性,可采用单个器件实现通道间隔离的应用,或采
[模拟电子]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved