如何选择输出段元件最大化DC-DC同步降压转换器性能

最新更新时间:2014-09-06来源: 互联网关键字:DC-DC  同步降压  转换器性能 手机看文章 扫描二维码
随时随地手机看文章

  简介

  开关电源如今在行业中的应用非常广泛,为多种终端应用提供高能效方案。它们常用于计算机、电动工具、电视、多媒体平板电脑、智能手机、汽车及其它不计其数电子设备的电源及电池充电电路。

  消费类电子行业应用最普及的转换器之一是DC-DC降压(step-down,亦称buck)转换器。

  简而言之,同步降压转换器用于将电压从较高的电平降至较低的电平。随着业界转向更高性能的平台,电源转换器的能效成为设计的一项关键考虑因素。因此,重要的是理解同步降压转换器的基础知识,以及怎样恰当地选择电路元件。

  同步降压转换器基础

  同步降压转换器的概念简单,它产生低于输入电压的稳压电压,可以提供大电流,同时将功率损耗降至最低。

  

 

  图1:同步降压转换器电路图。

  同步降压转换器包含2颗功率MOSFET、1颗输出电感及1颗输出电容。此特定降压拓扑结构的名称来源于它的2颗功率MOSFET的控制方法;导通/关断(on/off)控制被同步,以提供经过稳压的输出电压,并防止2颗MOSFET同时导通。

  高边MOSFET(Q1)直接连接至电路的输入电压。当Q1导通时,电流通过它提供给负载。在此期间,低边MOSFET(Q2)关断,流过电感的电流增加,为电感电容(LC)滤波器充电。当Q1关断时,Q2导通,此时电流通过它提供给负载。在此期间,渡过电感的电流减小,使LC滤波器放电。当两颗MOSFET都关断时,低边MOSFET提供额外功能,即通过本体二极管对开关节点电压来钳位,以防止高边晶体管首先关断时开关电压(VSW)升至太高的负值。

  开关节点电压被LC输出段弄得更平顺,从而在输出端产生稳压直流电压。两颗MOSFET被同步控制以防止击穿(shoot-through),而当高边及低边MOSFET同时处于导通状态时,产生直接对地短路,会发生击穿现象。

  高边MOSFET导通时间决定了电路的占空比(duty cycle)。如果占空比等于1,那么高边MOSFET在全部占空比均处于导通状态,输出电压等于输入电压。占空比为0.1表示高边MOSFET仅有10%时间导通,产生的输出电压约为输入电压的10%。

  降压转换器功率损耗

  降压转换器功率损耗受多种因素影响,包括功率MOSFET输出段、控制器/驱动器、反馈回路及转换器本身的布线。大多数降压转换器设计的占空比小于0.5,而计算机及服务器市场的降压转换器标准占空比是0.1至0.2。

  设计平台正转向更高开关频率,能够减小转换器尺寸及外形因数。同时,转换器必须提供更高性能及更高能效。输出段性能大幅影响降压转换器整体性能。因此,重要的是针对特定应用优化电感及电容选择。

  LC输出段

  同步降压转换器的输出段由电感及电容组成。它储存及为负载提供能量,使开关节点电压变得平顺以产生恒定输出电压。

  电感选择直接影响电感电流中的电流纹波的量,以及降压转换器本身的电流能力。不同制造商制造的电感在材料及电感值方面会有差异,公差通常为± 20%.电感包含固有的直流阻抗(即DCR),会影响输出段的性能。将DCR降至最低,即提升转换器的整体性能。对于要求大负载电流的应用而言,建议选择带低DCR的电感。电感值较低的电感DCR也较低,但在电感与纹波电流之间有折衷;电感越低,流过电感的纹波电流越大。必须达到最低电感,以符合特定应用电路的纹波电流要求。  输出电容直接影响转换器输出电压、输出反馈回路的响应时间,以及负载电流变化时出现的输出电压过冲的量。直流输出端存在纹波电压,因为流过电感及电容的电流上升及下降。增加电容会减小存在的纹波电压的量。然而,在电容与输出回应之间存在折衷。增加电容减小输出电压纹波及输出电压过冲,但延长了使输出电压回路回应负载变化所需的时间。因此,必须考虑最小电容,以符合转换器的纹波电压及电压过冲要求,同时维持足以快速回应负载变化的反馈回路。

  电容也包含寄生串行电阻,也就是等效串行电阻(ESR)。ESR影响输出电压纹波及转换器整体能效。因此,设计人员正转向低ESR设计。表面贴装陶瓷电容在要求高性能、小外形因子的系统中正变得盛行。使用并行的多颗电容使设计人员能够提供系统要求的电容,同时大幅减小等效的ESR。

  基本LC设计

  设计降压转换器输出段时,建议从电感开始。最小电感根据目标纹波电流及其它应用电路规范来计算。一旦选择好了电感,就可以确定最小电容。

  在电感与纹波电流之间存在折衷。目标纹波电流越少,就相当于最小电感越大。为了最佳化输出滤波器性能,建议设定20%至40%的目标电感纹波电流。

  需要计算最大ESR及最小电容,从而在高边MOSFET关断时维持稳压转出电压,以及将输出电压上存在的纹波的量降至最低。输出电压纹波可以表达为峰值-峰值电压,或者以电容电压比(CVR)的形式来表述。

  输出电容值及ESR越大,输出回应负载变化所需经历的时间就越长。ESR也影响输出电压纹波。

  当高边MOSFET导通时,流过电感及电容的电流增加,输出电压也增加。当高边MOSFET关断时,流过电感及电容的电流下降,输出电压也下降。为了提供恒定输出电压,转出电流增加的量必须等于电容电流减小的量。因此,流过电容的稳态电流为0 A。

  除了顾及输出纹波电压及电感纹波电压对输出电容的影响,也必须顾及输出段的瞬时负载回应能力。同步降压转换器必须能够回应负载电流变化,同时维持稳压输出电压。当负载电流从较高值变为较低值时,输出电压将暂时增加,直到转换器能够调节占空比,以使输出电压返回至它的稳压值。此暂时输出电压增加称作输出电压过冲。当负载从最大负载过渡到空载时,就出现最坏情况过冲。输出电容必须能够处理此瞬时条件。输出电压瞬时回应与输出电压纹波之间存在折衷。此两项因素必须平衡取舍以满足特定应用需求。

  选择电容时一个好的经验法则是选择值比计算的最小电容高最少20%的输出电容,从而顾及到电压公差。

  降压转换器输出滤波器设计影响输出电流纹波、输出电压纹波、输出电压过冲以及反馈回路的瞬时回应。元件选择也影响转换器的能效。影响同步降压转换器能效的最大因素是输出电感选择。电感值及DCR都会大幅影响性能。

  结论

  同步降压转换器的输出段在转换器性能方面发挥重要作用。为了达到目标纹波电流、输出纹波电压及输出过冲,必须选择超过最小电感值和最小电容值的电感和电容。当针对特定应用选择电感及电容时,还必须顾及其它因素。输出段可以通过针对它将工作的特定应用标准来设计而最佳化。

  电感值在输出纹波电流以及转换器的能效性能方面发挥重要作用。此外,输出电容较高时,输出电压纹波也会改善。转换器的能效受使用的电感的DCR大幅影响。

  电感与电感饱和电流之间存在折衷。因此,为了符合或超越纹波电流要求,电感必须大于计算的最小电感值,而电感饱和电流必须大于最大负载时转换器的峰值电流。

  电容也在同步降压转换器性能方面发挥重要作用。输出电容直接影响电压纹波的量及输出段的电压过冲。然而,电容对转换器的能效性能的影响极小。

关键字:DC-DC  同步降压  转换器性能 编辑:探路者 引用地址:如何选择输出段元件最大化DC-DC同步降压转换器性能

上一篇:看家秘笈:TL494如何实现单回路控制?
下一篇:汽车设计需要具超低 IQ 的 65V 同步降压型转换器

推荐阅读最新更新时间:2023-10-12 22:45

电感式DC-DC升压器原理
要了解电感式升压/降压的原理(我今天只讲升压),首先必须要了解电感的一些特性:电磁转换与磁储能.其它所有参数都是由这两个特性引出来的. 先看看下面的图: 电感回路通电瞬间  (原文件名:1.JPG)   相信有初中文化是坛友们都知道,一个电池对一个线圈通电,这是个电磁铁.不论你是否科盲,你一定会奇怪,这有什么值得分析的呢?有!我们要分析它通电和断电的瞬间发生了什么. 线圈(以后叫作"电感"了)有一个特性---电磁转换,电可以变成磁,磁也可以变回电.当通电瞬间,电会变为磁并以磁的形式储存在电感内.而断电瞬磁会变成电,从电感中释放出来. 现在我们看看下图,断电瞬间发生了什么: 断电瞬间  (原文件名:2.JPG)  
[电源管理]
电感式<font color='red'>DC-DC</font>升压器原理
远翔FP5217:DC-DC内置MOS大功率升压IC
FP5217是非同步升压驱动IC,内置NMOS30V/8A/15mΩ,输入低启动电压2.8V与宽工作电压5V~24V,单节锂电池3V~4.2V应用,将Vout接到HVDDPin;精准的反馈电压1.2V,软启动时间由外部电容调整,工作频率由外部电阻调整;过电流保护芯片内部 NMOS,检测电感峰值电流,检测电阻Rcs连接SWS与GND之间,CSpin检测Vcs。 特色 ➢启动电压2.8V ➢工作电压范围5V~24V ➢可调输出电压最高26V ➢反馈电压1.2V(±2%) ➢关机耗电流小于3μA ➢可调工作频率200kHz~1000kHz ➢可调软启动时间 ➢输入低电压保护(UVP) ➢可调过电流保护(OCP) ➢过温保护(OTP
[嵌入式]
远翔FP5217:<font color='red'>DC-DC</font>内置MOS大功率升压IC
36V双通道、1.6A同步降压驱动器简化LED调光控制
LT3964可运作于4V至36V的宽广输入范围,提供两个独立控制而可以高达2MHz切换的LED驱动器,透过小型外部零组件构成了高整合度、精省的解决方案。 亚德诺半导体(Analog Devices, Inc.,ADI)宣布推出Power by Linear的LT3964,该元件为一款双通道、36V、高效率、同步、降压型LED驱动器,具内部40V、1.6A电源开关和I2C介面,借此简化LED调光控制。 LT3964运用固定频率、电流模式控制,并作为具准确电流调节的定电流和定电压源运行,以在汽车、工业和建筑照明应用中提供最佳LED照明。在全电流负载时,两个通道同步运行可产生高于94%的效率。 该元件的400kHz I2C介
[半导体设计/制造]
高效率、高压、降压DC-DC转换器MAX5033
MAX5033为易于使用、高效率、高压、降压型DC-DC转换器,工作于高达76V的输入电压,空载时仅消耗270µA的静态电流。脉宽调制(PWM)转换器重载时工作在固定的125kHz开关频率,轻载时可自动切换到脉冲跳频模式,以达到低静态电流和高效率。MAX5033包括内部频率补偿,简化了电路应用。器件内部采用低导通电阻、高电压DMOS晶体管,以获得高效率和降低整个系统成本。此器件包括欠压锁存、逐周期限流、间歇模式输出短路保护及热关断功能。   MAX5033可提供高达500mA的输出电流。提供外部关断模式,具有10µA (典型)的关断电流。MAX5033A/B/C型号分别提供固定的3.3V、5V或12V输出电压;MAX5033
[模拟电子]
高效率、高压、<font color='red'>降压</font>型<font color='red'>DC-DC</font><font color='red'>转换器</font>MAX5033
ADI超低 EMI 42V单片式同步降压型稳压器问市
引言 高效率、低 EMI 降压型稳压器广泛见诸于汽车、工业、医疗和电信环境,用于依靠多种输入源为各式各样的应用供电。特别是在电池供电型应用中,大量时间处于待用模式,因而要求所有的电气电路以低静态电流工作,旨在延长电池运行时间。 LT8606/LT8607/LT8608 是一个单片式降压型稳压器系列,专为具有宽输入电压范围、低 EMI 水平和小解决方案尺寸的应用而优化。该系列的所有器件均采用耐热性能增强型 10 引脚 MSE 封装和 8 引脚 2 mm x 2 mm DFN 封装,因而可安放在狭小的空间里。如表 1 所示,它们的不同之处在于输出电流能力。 在必须保持低空载电流的电池供电型应用中,LT8606/LT8607/
[电源管理]
ADI超低 EMI  42V单片式<font color='red'>同步</font><font color='red'>降压</font>型稳压器问市
性能串行接口模拟多路转换器ADG731/ADG725
1 主要特点 ADG731/ADG725是ADI公司推出的具有3线控制接口的32通道/双16通道高性能单片模拟多路转换器,其中ADG731具有32选1通道转换功能;ADG725具有2组16选1通道转换或16选1差分信号通道转换功能。 ADG731/ADG725具有与SPI、QSPI、MICROWIRE和一些DSP接口标准兼容的3线接口。该电路在上电复位后,其内部转换寄存器为零,所有开关都处于断开位置。 图1 ADG731/ADG725采用增强型亚微米处理技术来提供低电压分散,从而可以满足胝导通电阻和低漏电流情况下的高速转换。该电路的工作电压为1.8V~5.5V单电源或2.5V双电源。导通电阻为几欧姆(与开关电阻匹配),且
[模拟电子]
转换器集成技术助力汽车电子性能提升
 “汽车行进中,首要的是对外界位置、角度等信号进行调理、处理,其次才是对这些信号分析后实现操控。因此对半导体厂商而言,处理器、功率器件并不是汽车电子的全部,转换器对于技术的提升具有同样重要的意义。”ADI汽车电子市场部系统应用经理沈飞在日前举办的媒体见面会上做了上述介绍。 据了解,ADI在汽车电子领域专注于绿色节能、安全和舒适三方面,通过将转换器技术与放大器、MEMS、传感器、数字处理器、RF以及功率技术等创新性地进行结合,ADI的汽车电子业务发展迅速,已经占据其整体业务的20%。 三个应用案例可以说明ADI转换器技术所带来的创新。 第一个例子是安全应用方面,应用于安全气囊和ESC系统中的MEMS传感器需要满足很高的性能
[嵌入式]
100V、1A、同步降压型稳压器仅需要 7µA 静态电流
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) 2015 年 9 月 3 日 凌力尔特公司 (Linear Technology Corporation) 推出 1A、100V 输入、同步降压型开关稳压器 LT8631。该器件的同步整流提供高达 90% 的效率,而突发模式 (Burst Mode ) 工作则在无负载备用情况下保持静态电流低于 7 A。其 3V 至 100V 的输入电压范围使该器件非常适合 48V 汽车系统、双电池运输系统、工业以及 36V 至 72V 电信应用。该器件内部的高效率开关在电压低至 0.8V 时提供高达 1A 的连续输出电流。LT8631 的突发模式工作提供超低静态电流,使该器件非常适合汽
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved