三相双开关四线PFC电路CCM控制策略的研究

发布者:TechVoyager最新更新时间:2010-10-24 来源: 现代电子技术关键字:三相双开关  PFC  CCM  控制方法 手机看文章 扫描二维码
随时随地手机看文章

      APFC(acTIve Power factor correction)技术就是用有源开关器件取代整流电路中的无源器件或在整流器与负载之间增加一个功率变换器,将整流输入电流补偿成与电网电压同相的正弦波,消除谐波及无功电流,提高了电网功率因数和电能利用率。从解耦的理论来看,三相PFC技术可以分成不解耦三相PFC、部分解耦三相PFC以及完全解耦三相PFC三类。全解耦的三相PFC,如6开关全桥电路,具有优越的性能,但是控制算法复杂,成本高。单开关的三相boost升压型PFC电路工作在DCM模式下,属于不解耦三相PFC,由于它的成本低,控制容易而得到广泛应用,但是开关器件电压应力大,电源容量难以提高,只适用于小功率场合。部分解耦的三相PFC电路具有低成本、高效的特点,具有广阔的应用前景。三相双开关电路就是典型的部分解耦PFC电路。本文针对该电路的工作原理和控制策略进行了仿真和实验。

  1 三相双开关PFC电路CCM下的工作原理

  1.1 主电路结构

  电路将三相交流电的中性线与2个串联开关管S1,S2的中点以及2个串联电容C1,C2的中点相连接,构成三电平(正、负电压和零电压)结构,2个串联电容分别并联平衡电阻R1,R2,使上、下半桥作用于电容C1,C2的输出电压相等。电路结构如图1所示。

电路结构

  由于中性线的存在,上下半桥相互独立,形成部分解耦的基础,并且开关器件承受的电压只有输出电压的1/2,降低了对开关管的选型要求。在此基础上提出一些新的双开关拓扑结构,但结构复杂,难以控制。

  1.2 过程分析

  由上述分析,上、下半桥可作为独立结构分析。以上半桥为例,等效电路图如图2所示。

等效电路图

  由三相电压的对称特性,每2π/3的区间里,只有一相正相电压最大,如果能使每相的瞬时电流在2π/3的区间里跟踪其最大相电压,即可实现最大程度的电流校正。根据这样的思路,现分析[π/6~5π/6]中a相电流的变化,因为这段区间Ua最大,可分3个阶段分析。

  第1阶段[π/6~π/3],Ua>Uc>O,在t0时刻开通S1,a相和c相电感同时充电,导通时间ton,这段时间的等效电路如图3所示。由于开关器件载波频率远大于工频,因此对于S1开关周期电路分析可将三相电源等效为对应的直流电压源。基于此假设可知,载波频率越高,电流波形越接近推理结果。此时的a相电流参见式(1):公式

  式中:ILc(t0)为c相电流初值。

  在t1时刻关断S1,电压源和储能电感共同向负载提供能量,电感电流下降,由于Uc较小,iLc的下降率更大。该段时间的等效电路如图4所示。此时a相的电感电流参见式(3):

公式

  式中:ILa(t1)为a相电流初值,U01为上半桥输出电压。

  同理,c相电流参见式(4):

公式

  式中:ILc(t1)为c相电流初值。

  由以上公式推理可得iLa和iLb的波形如图5所示。由于电流的连续模式,a相电感放电阶段不会回零,且变化斜率由相电压幅值决定,如式(1)、式(3)所示。由于单相电路等效为Boost电路,当电路运行在CCM模式,占空比计算如式(5)所示:

公式

  式中:Uo1是上半桥的输出电压。

等效电路

iLa和iLb的波形

  第2阶段[π/3~2π/3],正相电流只有a相,所以开关的通断只会引起iLa的变化。

  第3阶段[2π/3~5π/6],a相和b相电压为正,开关的通断会引起iLa,iLb的变化。电路分析过程均和第一阶段类似。通过上面的分析可知。在[π/6~5π/6]控制a相的电流跟随其最大相电压,既可以使a相的电流得到最大的补偿,又可以使相邻相的电流得到一定补偿。这种控制方法简单,可行性高,但由于电路处于部分解耦状态,在第l(或3)阶段无法对c(或b)相进行独立控制,补偿效果并不理想,如何优化控制以减小c(或b)电流谐波仍有待解决。

关键字:三相双开关  PFC  CCM  控制方法 引用地址:三相双开关四线PFC电路CCM控制策略的研究

上一篇:用QUANTUM自动控制平台实现备用风机跨网段控制
下一篇:ADI:太阳能与风能发电是现阶段投资重点

推荐阅读最新更新时间:2024-03-30 21:32

某位置伺服系统中运动控制方法技术的研究
本论文结合上述情况,在某项目中总结出了一套对PID算法的参数进行整定的方法。PID调节方法是三阶系统中一种常用的有效控制方法。PID在许多系统中能够得到广泛的运用是由于这些系统都存在非线性和未知的干扰,尤其是在模拟和数字的混合系统中,由于模拟信号很容易受到影响,导致系统设计较为复杂。在一些相互合作的项目中,由于存在单位之间需要保密的原因,对系统的理论分析通常不能够做到具有精确的数学模型,因此,PID算法是解决这类情况的一种有效控制方法。 1 传统数字PID算法 1.1 位置式控制算法 位置式PID控制算法描述为: 令 则离散化的PID位置式控制算法的编程表达式为: 式中:k——采样序号;
[工业控制]
用于PFC的交错式升压转换器的优势
采用交错式升压级可以降低功率因数校正预调节器功率转换器输入及输出纹波电流,从而缩小升压电感器尺寸并降低输出电容的电气应力。 用于 PFC(功率因数校正)预调节器的最常见的拓扑结构为升压转换器,该升压转换器有一个持续的输入电流,您可以采用平均电流模式控制技术进行操作,使输入电流可以跟踪线电压变化。图 1 显示了一款传统的单级升压转换器。为了更方便地解释电路工作情况,本文所指的均为直流输入。ΔIL1 表示转换器输入端电感纹波电流变量,同时需要进行滤波处理使其符合 EMI 规范。I1 表示二极管输出电流,该电流为非持续电流,同时需要输出电容 (COUT) 对其进行滤波处理。在该拓扑结构中,输出电容纹波电流 ICOUT 较强,这也是 I1
[电源管理]
基于8位单片机实现电机和PFC控制
  印度政府鼓励市民使用高能效的家用电器,以最大限度地降低本国的人均耗电量。众多非节能型家用电器,使得年均耗电量有望呈指数增长。为了提高向住宅、办公楼和工厂输送电力的电网的功率效率,降低其功率损耗,许多设计机构都开始考虑在其最新研发的设备中采用功率因数校正(PFC)技术来实现现代化电机驱动。因此,由于近年来电网传输线路中出现了高度非线性负载,PFC成为了电机控制驱动中的重要特性。   实现高能效电机设计的途径有多种。英飞凌公司推出了经济划算的高功率因素开发平台。通过将无传感器FOC和PFC控制集成到一个8位单片机XC836上,可以降低设备的总功耗,节约高昂的电费。本技术论文描述了全新高压无刷直流风扇电机驱动和PFC控制开发平台的
[单片机]
基于8位单片机实现电机和<font color='red'>PFC</font>控制
一种金卤灯电子镇流器的新型控制方法
        现今,高强度气体放电灯由于它的发光效率高、色温好、寿命长等优点,已经被广泛地应用于广场、道路照明等场合。而其中的金属卤化物灯由于拥有诸多优点更被认为是最好的人造光源之一。但是,由于金卤灯的负阻特性和特殊的启动要求,必须和与之相匹配的镇流器共同使用。对比于传统的电感式镇流器,电子镇流器有着许多优点,对它的研究和开发也是电力电子行业的一大热点。   为了确保金卤灯不出现声谐振,电子镇流器一般工作于低频方波状态。传统的低频方波电子镇流器包括3级结构:功率因数校正电路、降压电路   和全桥逆变电路。这种结构非常复杂而且造成了镇流器的成本昂贵。简化电路、降低成本已经成为如今研究的重点。一种方法就是把前两级
[电源管理]
一种金卤灯电子镇流器的新型<font color='red'>控制方法</font>
DCM反激式PFC转换器
  和BooST PFC转换器一样,反激式PFC转换器工作在DCM模式时的固有特点是:输出电压调节采用电压型PWM控制时9稳态占空比Du为常数(即导通时间TON为常数),输人电流接近于正弦波。因此,控制电路中无须乘法器和电流控制,就可以实现功率因数校正。   图1(a)所示为DCM反激式PFC转换器的原理图,它是一个单环电压反馈PWM控制系统。图1(b)所示为工频半周期内,在高频PWM开关控制下的输人电流波形。开关电流iv呈三角波形,虚线为电流峰值iP的包络线,实线为一个开关周期内开关电流平均值iV(av)曲线。   式中 Udc——整流输入电压。               由式(8-22)可知,DCM反激式PFC转
[电源管理]
DCM反激式<font color='red'>PFC</font>转换器
电源转换的交错式PFC控制技术应用
电源设计工程师设计交错式 PFC转换 器已有数年,但因缺少合适的控制器,所以对电源控制的设计必须非常谨慎。为使交错式PFC设计变得更轻松,德州仪器(TI)开发出两款交错式PFC控制器:一款为针对平均电流模式预调节器的控制器( UCC28070 ),另一款为针对交错式转移模式PFC预调节器的控制器( UCC28060 )。本文将讨论如何利用交错式PFC及其控制技术来增加功率密度、提高系统效率并降低系统成本。   交错式PFC升压预调节器(图1)仅由两个PFC升压转换器组成,这两个升压转换器的工作相位相差180°,可降低由电感电流(IL1和IL2)引起的输入电流(IIN)。由于电感高频纹波电流为反相,所以二者相互抵销,从而降低由升压
[电源管理]
电源转换的交错式<font color='red'>PFC</font>控制技术应用
充电PFC无损吸收主电路
正常充电模式的充电过程一般在家庭和公共场所进行,正常充电模式的充电功率等级通常为6.6kW,典型的充电时间为5~8小时。正常充电模式和应急充电模式中的充电功率变换器相类似,正常充电模式也可采用单级AC/DC变换器。但由于带PFC功能的单级变换器,开关管的峰值电流很大。在两级变换器中,PFC级可采用传统的Boost升压型电路,开关管采用软开关或硬开关均可。但为了提高效率,应选择软开关Boost变换器。   传统的AC/DC全波整流电路采用的是整流   电容滤波电路。这种电路是一种非线性器件和储能元件的组合,输入交流电压的波形是正弦的,但输入电流的波形发生了严重的畸变,呈脉冲状。由此产生的谐波电流对电网有危害作用,使电源输入功率因
[电源管理]
充电<font color='red'>PFC</font>无损吸收主电路
单片DSP实现马达控制和PFC
现在DSP(数字信号处理器)已从80年代几百美元降到3美元,而性能更加强大,集成有各种复杂的外设。使设计人员可用单片DSP实现马达控制。 DSP控制器概述 实现先进的马达驱动系统要求马达控制器提供如下性能:具有产生多路高频,高分辨率脉宽调制(PWM)波形的能力;实现需要最小转矩、在线参量和适应及提供精密速度控制的先进算法的快速处理;具有从同一控制器提供马达控制、功率因数校正(PFC)和通信装置的能力,能过降低元件数、简单板布局和容易制造使尽可能简单地实现完整方案;允许用改变软件代替重新设计一个独立平台,实现将来产品改进的灵活方案。 新型DSP是针对这些问题设计的。这些控制器具有DSP芯片的计算能力,片上还集成了有用的外
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新工业控制文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved