技术文章-通过系统封装技术增强系统功能

最新更新时间:2019-01-30来源: 互联网关键字:封装 手机看文章 扫描二维码
随时随地手机看文章

嵌入式系统的复杂度及其具备的功能正在进入一个新阶段。即使是对于大多数人认为相对简单的系统,也需要更复杂的控制来保持其在市场中的地位。开发团队在选择硬件平台时需要考虑采用的标准,上述复杂性则对此产生了连锁反应。

 

我们可以在许多领域看到这种效果,这里仅以一个安全系统为例。表面上看,两个电子门锁可能看起来同样简单,但是它们所包含的功能却有很大差异。传统的设计采用一个相对简单的微控制器(MCU),并与外围设备接口,用于读取电子钥匙卡(采用磁条或通过NFC原理)。这种类型的系统将被那些更先进和更加智能化的设计所取代,未来的设计将具有更多的功能,包括基于人脸、指纹或语音的识别技术,甚至是利用这些生物特征的可能组合。

 

对于智能门锁,其核心功能和逻辑保持不变,即只有在钥匙(以任何形式)出现时才能打开门,但其设计所需的复杂程度要高得多。而且必须指出的是,设计仍然需要考虑成本和功率的限制。这种更高级的锁可能需要从摄像头获取输入信息,甚至可能还需要麦克风和指纹读取器,具体取决于使用多少生物特征识别选项。高性能数字信号处理(DSP)用来处理来自这些设备的输入数据,并可以智能地处理每个数据流。

 

在软件级别,现在已有大量的资源来帮助实现这种设计,许多设计师使用高性能ARM内核来处理高级软件。执行人脸和指纹识别的图像处理和机器学习程序库可用于各种平台,其中包括基于德州仪器Sitara系列的DSP内核以及ARM内核。 OpenCV图像处理程序库即是一个例子。Debian等Linux版本则可为开发和运行时间执行提供了一个方便的环境,能够访问多种编程语言(从Python到C++)。

 

虽然C和C++是嵌入式系统中使用的传统程序语言,但Python却能够提供许多显著的优势。例如,Numpy程序库拥有广泛的函数组合,支持与复杂机器学习应用相关的多维矩阵和数组所需的复杂数学运算。因此,能够为软件原型设计提供一个更简单的流程。然而,对于从门锁到工业电机控制器等所有嵌入式应用,满足实时要求的能力至关重要。

 

传统上,为MCU设计的操作系统已针对软件实时功能进行了优化,但是大多数Linux版版却不是这样。 Linux有其实时性,但通常无法访问软件工程师想要使用的程序库,而这却是多核方案的有用之处。例如,Sitara系列不仅提供能够运行确定性算法的DSP,还包括了高速可编程实时单元(PRU),能够独立地于主要面向Linux的ARM处理器内核而运行。

 

选择适当的硬件也有助于控制目标设计的能效。以门锁为例,一种可能的情形是,即使门前没有人,处理器也会持续处理其输入,对于需要全天候运行的设备,这种方案无疑非常耗电。相反,如果增加一个接近传感器,则可以提醒核心处理器应该检查附近范围内是否有人,并相应地激活摄像头。

 

开发人员可能希望尝试不同的选项。一种方案是简单的接近传感器,只能确定是否存在足够高度的物体。另一种方案是采用热电传感器,接近的人会发出红外辐射,热电传感器接收到这种辐射后将产生电压。开发人员针对这些开发所需要的是一个原型设计环境,能够支持轻松地切换I/O。

 

Beagleboard和Beaglebone 都是非常受欢迎的原型设计平台,其中Beaglebone特别适用于空间受限的应用,例如需要嵌入到门内或门框架的锁等等。通过附加的Click板,可以直接为执行器安装不同的传感器和控制器,包括热电传感器和麦克风等各种器件。

 

相较于采用较简单MCU器件用户可用的选择,进行更高性能嵌入式系统硬件设计时遇到的问题传统上则更加困难。虽然这些器件本身可以适应Beaglebone主板的尺寸要求,但设计高性能多核处理器要比传统处理器困难得多。如果市场上有现成的主板,并带有所需的SoC,对于初始原型设计应该没有问题,但如果系统设计是针对制造而进行优化,则是一个至关重要的考虑因素。

 

通常情况下,MCU仅有非常简单的电源要求,只需一个电源输入轨即可。但对于高性能微处理器和SoC,通常需要多个电源轨。这些电源轨通常需要灵活可变,以支持SoC所需的不同低功耗模式。在电源轨电压设定后,即使在高电流负载下也不能出现任何偏差。此外,SoC在启动时通常会有严格的电源排序要求。

 

在考虑如何将SoC连接到存储器时,设计人员也面临着类似的复杂性。基于传统MCU的应用在数据存储方面通常是独立的,相比之下,智能系统则需要访问更多的内存资源,图像和视频缓冲可以轻松占据许多兆字节的数据存储容量。诸如深度神经网络(DNN)等机器学习算法,依赖于系统处理数百万个参数的能力,并需要长期占用大量的存储。

 

系统所需的存储器不仅要容量大,而且也需采用诸如DDR3之类的协议来实现高速运行。 SoC和DDR3存储器之间的信号传输非常复杂且耗时,总线上的信号总是具有非常严格的时序约束,这要求信号路由长度要相等。较短的直接路径必须要包括一些蛇形绕线布局,以使它们的路径长度与较长的迹线相等。这就是系统级封装(SIP)能够发挥效力之所在。

 

与许多原型设计平台的系统级模块(SOM)相比,SIP更容易在生产环境中集成。 SOM是一块印制电路板(PCB),需要安装到主电路板上,并通过一个特殊连接器来实现所有定制I/O,这增加了系统的尺寸和成本。另一方面,SIP更像是一个标准的单片IC,可以像其他IC一样与所有其他I/O器件一起焊接到定制PCB。

 

OSD335 Functional Block Diagram

 

图1:Octavo OSD335x SIP的功能框图。

 

Octavo Systems的OSD335x 系列 SIP产品包含有强大智能系统核心所需的一切,也秉承了传统MCU设计的简易性。这些SIP基于德州仪器的Sitara系列SoC,可为工程师提供1GHz ARM Cortex-A8处理器、两个PRU、DDR3内存和一个电源管理IC(PMIC),能够确保它们始终以最高效率运行。OSD335x封装内的PMIC可应对所有不同的电压轨和电源排序,因此就像传统的MCU一样,只需连接一个电源输入。

 

image.png

图2:Octavo Systems的OSD335x。

 

此外,SIP PMIC中的电源控制电路也负责为并非始终连接到主电源的系统进行电池管理。对于需要通过AC适配器等各种电源供电的系统,OSD335x PMIC可自动处理电源多路复用和电源之间的切换。对于电池供电系统的另一个好处是,通过微型封装实现的集成有助于减少SoC和DDR存储器之间数据传输所消耗的能量。

 

现实世界要求系统具备更多的智能,并要融入不断发展的物联网(IoT)世界,Octavo SIP解决方案是一个非常高效的处理平台,既提供了传统MCU的简易性,同时又具有更强大的功能。该公司开发的核心SIP技术有助于创建多种变体,确保工程师能够得到针对其应用而调整的版本,并且以一个非常小的封装满足许多智能物联网设备的空间受限要求。对于原型设计,OSD335x已内置针对物联网应用的Beaglebone Black Wireless等平台,可轻松地将SIP从开发移植到生产。凭借Sitara SoC提供的丰富软件支持,这种解决方案一定能够使未来的开发项目更容易地实现。



关键字:封装 编辑:muyan 引用地址:技术文章-通过系统封装技术增强系统功能

上一篇:3D封装技术英特尔有何独到之处
下一篇:2018年全球封测产业扩产不停步

推荐阅读最新更新时间:2023-10-13 10:41

1.5kW恒压恒流电源,在紧凑的封装中提供先进的可编程性
1.5kW恒压恒流电源,在紧凑的封装中提供先进的可编程性,适用于各种应用 2021 年 9 月 30 日– XP Power正式宣布推出两款新的单相1.5kW AC-DC电源,提供可编程恒压(CV)和恒流(CC)操作,并带有模拟和数字接口供用户控制。这款紧凑方便使用的产品采用高效的谐振零电压开关(ZVS)拓扑,适用于工业、制程控制、印刷、医疗、半导体制造、水处理和测试/测量等行业的设备制造商。 这款新产品的应用范围广泛多样,包括医疗成像和患者治疗/诊断、半导体制造中的蚀刻和沉积、电池充电、机器人和激光器。其他应用,如工业印刷、电镀、阴极保护、LED加热/固化、水净化和制氢,也将受益于这款产品。 用户对电源的要求越
[电源管理]
1.5kW恒压恒流电源,在紧凑的<font color='red'>封装</font>中提供先进的可编程性
全面解析40种芯片常用的LED封装技术
LED封装 技术大都是在分立器件封装技术基础上发展与演变而来的,但却有很大的特殊性。一般情况下,分立器件的管芯被密封在封装体内,封装的作用主要是保护管芯和完成电气互连。而 LED 封装则是完成输出电信号,保护管芯正常工作。现给大家介绍40种封装技术。    1、BGA封装(ballgridarray)   球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚LSI用的一种封装。封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm的360引脚BGA仅
[电源管理]
全面解析40种芯片常用的LED<font color='red'>封装</font>技术
LED板上芯片(COB)封装流程
   LED 板上芯片(Chip On Board,COB)封装流程  首先是正在基底表面用导热环氧树脂(一般用掺银颗粒的环氧树脂)覆盖硅片安放点, 然后将硅片 间接安放正在基底表面, 热处理至硅片牢固地固定正在基底为行, 随后再用丝焊的方法正在硅片和基底之间间接建立电气连接。其封拆流程如下:   第一步:扩晶 采用扩驰机将厂商提供的零驰 LED 晶片薄膜均匀扩驰, 使附灭正在薄膜表面紧密陈列的 LED 晶粒拉 开,便于刺晶。   第二步:背胶 将扩好晶的扩晶环放正在未刮好银浆层的背胶机面上,背上银浆。点银浆。适用于散拆 LED 芯片。 采用点胶机将适量的银浆点正在 PCB 印刷线路板上。   第三步:放入
[电源管理]
LED功率型封装
LED芯片及封装向大功率方向发展,在大电流下产生比Φ5mmLED大10-20倍的光通量,必须采用有效的散热与不劣化的封装材料解决光衰问题,因此,管壳及封装也是其关键技术,能承受数W功率的LED封装已出现。5W系列白、绿、蓝绿、蓝的功率型LED从2003年初开始供货,白光LED光输出达1871m,光效44.31m/W绿光衰问题,开发出可承受10W功率的LED,大面积管;匕尺寸为2.5×2.5mm,可在5A电流下工作,光输出达2001m,作为固体照明光源有很大发展空间。   Luxeon系列功率LED是将A1GalnN功率型倒装管芯倒装焊接在具有焊料凸点的硅载体上,然后把完成倒装焊接的硅载体装入热沉与管壳中,键合引线进行封装。这种封
[电源管理]
晶体管的分类
按半导体材料和极性分类 按晶体管使用的半导体材料可分为硅材料晶体管和锗材料晶体管。按晶体管的极性可分为锗NPN型晶体管、锗PNP晶体管、硅NPN型晶体管和硅PNP型晶体管。 按结构及制造工艺分类 晶体管按其结构及制造工艺可分为扩散型晶体管、合金型晶体管和平面型晶体管。 按电流容量分类 晶体管按电流容量可分为小功率晶体管、中功率晶体管和大功率晶体管。 按工作频率分类 晶体管按工作频率可分为低频晶体管、高频晶体管和超高频晶体管等。 按封装结构分类 晶体管按封装结构可分为金属封装(简称金封)晶体管、塑料封装(简称塑封)晶体管、玻璃壳封装(简称玻封)晶体管、表面封装(片状)晶体管和陶瓷封装晶体管等。其封装外形多种多样。
[模拟电子]
LabVIEW 8.2的封装数据和方法
  每个LabVIEW类都包含了数据和方法两部分。LabVIEW类的数据是私有的,对于不是该类成员的VI来说是隐藏的。如果需要访问类的私有数据,必须创建方法,即创建该类的 成员Ⅵ,再通过成员Ⅵ中的函数对私有数据执行操作。封装就是将数据和方法合并到一个类中,类中数据仅可由该类的成员Ⅵ访问。通过封装可创建模块化代码,便于更新或修改代码而不影响应用程序中其他部分的代码。   成员Ⅵ可以不同程度地向用户公开:公共、保护和私有。使用LabVIEW类的应用程序开发人员(即LabVIEW类用户)可在LabVIEW类之外创建一个Ⅵ,在这个Ⅵ的程序框图中,将LabVIEW类中 公共 型的成员Ⅵ当作子Ⅵ来调用。通过调用 公共 型成员Ⅵ,La
[测试测量]
汽车功率半导体封装的今天和未来(后篇)
技术名词:逆变器、转换器、IDM、引线框架技术(XDLF)、TOLL、LFPAK、宽频带隙特性 上一篇介绍了电动汽车的发展趋势以及SiC、GaN的技术特性,以及封装层面上所面临的技术难点 (参考:上一篇文章) 。本篇将继续讲解功率半导体封装产业链的有关内容。 价值链分析 从封装技术的角度看,半导体行业已经经历了若干个周期。例如,随着移动通信领域的产品生命周期缩短,一旦包装平台合格,技术整合和数量将急剧增加。随着新颖的颠覆性技术的出现,这种形式可能会出现一个巨大的替代。相比之下,汽车产品的生命周期通常更长。一般来说,汽车产品都建立在稳健的Si节点和封装上。 在未来,随着更短的开发周期驱动着汽车供应商走向市场战略,汽车
[汽车电子]
汽车功率半导体<font color='red'>封装</font>的今天和未来(后篇)
基于STM32F4的 C++封装(完整代码)
一直有一个想法就是用 C++ 去做 STM32 的开发,但是很少有这方面的资料。经过一段时间的思考,决定在官方的 ll 库的基础上做一层 C++ 的简单封装。因为官方的库基本实现了全系列的 MCU 都是相同的 API 接口,所以 C++ 封装后的库也有很好的移植性。原理性的东西就不讲理了,直接上代码。 stm32f4xx_xgpio.h 文件
[单片机]
基于STM32F4的 C++<font color='red'>封装</font>(完整代码)
小广播
最新半导体设计/制造文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 EDA与IP 电子制造 视频教程

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved