ADI 旗下凌力尔特推出高压侧 N 沟道 MOSFET 驱动器 LTC7001

最新更新时间:2017-07-07来源: 互联网关键字:ADI  MOSFET  驱动器  LTC7001 手机看文章 扫描二维码
随时随地手机看文章

电子网消息,亚德诺半导体 (  ADI ) 旗下凌力尔特公司 ( Linear ) 推出高速、高压侧 N 沟道 MOSFET 驱动器 LTC7001,该器件以高达 150V 电源电压运行。


据悉,其内部充电泵全面增强了外部 N 沟道 MOSFET 开关,使其能够保持无限期接通。LTC7001 强大的 1Ω 栅极驱动器可凭借非常短的转换时间和 35ns 传播延迟,非常方便地驱动栅极电容很大的 MOSFET,因此很适合高频开关和静态开关应用。


LTC7001 用来接收以地为基准的低压数字输入信号,并快速驱动一个漏极电压可能在 0V 至 135V (绝对最大值为 150V) 之间的高压侧 N 沟道功率 MOSFET。LTC7001 在 3.5V 至 15V 的驱动器偏置电源范围内运行,具可调欠压闭锁。


当驱动一个 1000pF 负载时,快速 13ns 上升和下降时间最大限度降低了开关损耗。其他特点包括可调接通转换率和可调过压闭锁。


此外,LTC7001 采用 MSOP-10 封装,其引线配置为提供高压间隔。该器件有 3 种工作结温级版本,扩展和工业级版本的温度范围为 –40°C 至 125°C,高温汽车级版本则为 –40°C 至 150°C,军用级版本为 –55°C 至 150°C。

关键字:ADI  MOSFET  驱动器  LTC7001 编辑:王磊 引用地址:ADI 旗下凌力尔特推出高压侧 N 沟道 MOSFET 驱动器 LTC7001

上一篇:意法推出新一代低功耗蓝牙系统芯片
下一篇:ST推出贴装智能低功耗模块,节省高能效电机驱动电路空间

推荐阅读最新更新时间:2023-10-12 23:47

影响MOSFET性能的一些因素
  在追求不断提高能效的过程中,MOSFET的芯片和封装也在不断改进。尽管四十多年来我们对这种器件有了很多了解,但目前将它们有效地应用于电源产品依然面临挑战。根据具体应用建立FET性能模型并采用电子表格记录数据的经验丰富的设计人员,亦未能从熟悉的模型中获得满意的结果。   除了器件结构和加工工艺,MOSFET的性能还受其他几个周围相关因素的影响。这些因素包括封装阻抗、印刷电路板(PCB)布局、互连线寄生效应和开关速度。事实上,真正的开关速度取决于其他几个因素,例如切换的速度和保持栅极控制的能力,同时抑制栅极驱动回路电感带来的影响。同样,低栅极阈值还会加重Ldi/dt问题。   正因为了解电路中晶体管的性能很重要,所以我们将选用半桥
[电源管理]
影响<font color='red'>MOSFET</font>性能的一些因素
简化速度控制 Diodes推电机前置驱动器ZXBM1021
Diodes公司 (Diodes Incorporated) 推出单相无刷直流电机前置驱动器ZXBM1021,为多种消费性及工业产品内的散热风扇、排气扇、抽风机、电机和泵,提供多功能且小巧的变速控制解决方案。这个灵活的前置驱动器集成了PWM信号积分器及MOSFET缓冲器等常用外部元件,使设计人员得以大幅简化系统结构,以及减少整体电路板元件数量。 这款前置驱动器可通过直接运用外部PWM信号、直流电压信号或热敏电阻网络输入,严密控制电机转速。它集成了霍尔偏置和放大器电路,以确保与各种霍尔效应传感器相兼容。集电极开路频率发生器引脚提供转速输出,能够在外部监控旋转及速度。为防止在控制信号消失的情况下出现电机堵转或速度低于最低值,Z
[嵌入式]
设计高效高可靠LED灯具的五个忠告
进入2011年,澳大利亚已经率先禁止使用白炽灯,这为LED灯具的大规模普及揭开了序幕,另外,随着欧盟各国、日本、加拿大等国家将在2012年禁止使用白炽灯,LED灯具的照明普及率会进一步提升,这让掘金绿色照明革命的中国数千家LED灯具厂商欢欣鼓舞――因为一个巨大的市场就要开启,而这次唱主角的是中国厂商。不过,应当看到,LED灯具要普及,不但需要大幅度降低成本,更需要解决能效和可靠性的难题,如何解决这些难题,Power Integrations市场营销副总裁Doug Bailey分享了高效高可靠LED灯具设计的五个忠告。   一、 不要使用双极型功率器件   Doug Bailey指出由于双极型功率器件比MOSFET
[电源管理]
设计高效高可靠LED灯具的五个忠告
同步升压转换器设计中MOSFET的选择策略
    在个人计算机应用领域,随着为核心DC-DC转换器开发的同步升压转换器的开关频率向着1MHz-2MHz范围转移,MOSFET的损耗进一步增加。鉴于大多数 CPU 需要更大的电流和更低的电压,这种问题被复杂化了。如果你考虑其它支配损耗机制的参数,如电源输入电压和门极电压,我们就要处理更为复杂的现象。但是,这并不是问题的全部,我们还会遇到可能造成损耗极大恶化并降低电源转换效率(ξ)的二次效应。     这些二次效应包括击穿损耗和因像电容和电感等效串联电阻( ESR )、电路板电阻及电感、MOSFET封装 寄生电感 所这样的寄生电阻引起的损耗。其它二次损耗机制是MOSFET的电极电容之间的充电和放电,包括门极-源极间电容(Cgs
[电源管理]
同步升压转换器设计中<font color='red'>MOSFET</font>的选择策略
功率MOSFET驱动技术详解
功率MOSFET具有导通电阻低、负载电流大的优点,因而非常适合用作开关电源(switch-mode powersupplies,SMPS)的整流组件,不过,在选用MOSFET时有一些注意事项。功率MOSFET和双极型晶体管不同,它的栅极电容比较大,在导通之前要先对该电容充电,当电容电压超过阈值电压(VGS-TH)时MOSFET才开始导通。因此,栅极驱动器的负载能力必须足够大,以保证在系统要求的时间内完成对等效栅极电容(CEI)的充电。在计算栅极驱动电流时,最常犯的一个错误就是将MOSFET的输入电容(CISS)和CEI混为一谈,于是会使用下面这个公式去计算峰值栅极电流。   I = C(dv/dt)   实际上,CEI的值
[电源管理]
功率<font color='red'>MOSFET</font>驱动技术详解
全新高压MOSFET高效支持大小功率应用
2017年4月10日,德国慕尼黑讯—英飞凌科技股份公司(FSE: IFX / OTCQX: IFNNY)壮大现有的CoolMOS™技术产品阵容,推出600 V CoolMOS™ P7和600 V CoolMOS™ C7 Gold (G7)系列。这两个产品系列的击穿电压高达600 V,具备更出色的超结MOSFET性能。它们可在目标应用中实现非常出色的功率密度。 600 V CoolMOS P7:高效率和易用性的优化组合 新推出的P7树立效率标杆并具备更高的性价比,可大大简化设计。该器件的目标应用包括充电器、适配器、照明装置、电视、PC电源、太阳能、服务器、电信和电动汽车充电等,其功率级别从100 W到15 kW不等。在不同的拓
[模拟电子]
基于LT3598驱动器的多串LED背光源应用方案
一个电感器、一个 IC、一串 LED,这就是构建一款用于 LCD 显示器背光源的升压型LED驱动器的传统方式。尽管对于那些只需要几串LED 的小型LCD 显示器而言这是一种非常合乎需要的解决方案,但在较大的显示器当中,控制器 IC 和电感器的数目将以倍数地增加,从而使成本开支和PCB 面积要求也是节节攀升。在人们竞相采用坚固且具有出众频谱特性的LED来替代中等尺寸明亮显示器中的 CCFL 之过程中,这是一个重大的障碍。   需要一种更好的驱动器以使 LED 背光源的成本和复杂性与CCFL大致相当。通过以高达每串30mA 的电流来驱动6串各由10个LED 组成的LED串,LT3598 满足了上述要求。该器件还具有一个内置的电源
[电源管理]
基于LT3598<font color='red'>驱动器</font>的多串LED背光源应用方案
以89C51单片机为控制核心的开关电源优化设计
引言   开关电源是利用现代电力电子技术控制功率开关管(MOSFET,IGBT)开通和关断的时间比率来稳定输出电压的一种新型稳压电源。从上世纪90年代以来开关电源相继进入各种电子、电器设备领域,计算机、程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源。利用单片机控制的开关电源,可使开关电源具备更加完善的功能,智能化进一步提高,便于实时监控。其功能主要包括对运行中的开关电源进行检测、自动显示电源状态;可以通过按键进行编程控制;可以进行故障自诊断,对电源功率部分实现自动监测;可以对电源进行过压、过流保护;可以对电池充放电进行实时控制。   开关电源的系统结构   通信用-48V开关电源结构图如图1所示:
[电源管理]
小广播
最新半导体设计/制造文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 EDA与IP 电子制造 视频教程

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved