哈佛大学联合阿尔贡国家实验室开发基于MEMS芯片的超级透镜

最新更新时间:2018-03-12来源: 麦姆斯咨询关键字:MEMS芯片 手机看文章 扫描二维码
随时随地手机看文章

将超表面透镜和MEMS技术相结合,或能为光学系统带来高速扫描和增强的聚焦能力。



集成在MEMS扫描器上的基于超表面技术的平面透镜(超级透镜),左图为扫描电镜图片,右图为光学显微成像图片。在MEMS器件上集成超级透镜,将有助于整合高速动态控制和精确波阵面空间控制优势,打造光控制新模型


目前,透镜技术在各个领域都获得了长足的发展,从数码相机到高带宽光纤,再到激光干涉仪引力波天文台 LIGO的仪器设备等。现在,利用标准的计算机芯片制造技术开发出了一种新的透镜技术,或将替代传统曲面透镜复杂的多层结构和几何结构。


与传统曲面透镜不同,基于超表面光学纳米材料的平面透镜相对更轻。当超表面亚波长纳米结构形成某种重复图纹时,它们便可以模仿能够折射光线的复杂曲度,但是体积更小,聚光能力更强,同时还能减少失真。不过,大部分这种纳米结构器件都是静态的,功能性有限。


据麦姆斯咨询报道,超级透镜技术开拓者——美国哈佛大学应用物理学家Federico Capasso,和MEMS技术早期开发者——美国阿尔贡国家实验室纳米制造和器件小组负责人Daniel Lopez,他们俩来了一番头脑风暴,为超级透镜增加了运动控制能力,例如快速扫描和光束控制能力,或将开辟超级透镜新应用。


Capasso和Lopez联手开发了一款器件,在MEMS上集成了中红外光谱超级透镜。他们将该研究成果发表在了本周的《APL Photonics》期刊上。


MEMS是一种结合微电子和微机械的半导体技术,在计算机和智能手机中可以找到,包括传感器、执行器和微齿轮等机械微结构。MEMS现在几乎无处不在,从智能手机到汽车安全气囊、生物传感器件以及光学器件等,MEMS可以借助典型计算机芯片中的半导体技术完成制造。


Lopez说:“在一个硅芯片上高密度集成数千个独立控制的MEMS透镜器件,可以实现光学领域前所未有的光控制和操作。”


研究人员在一块SOI绝缘体上硅(2微米顶部器件层、200纳米掩埋氧化层以及600微米衬底层)上,采用标准光刻技术制造了这款超表面透镜。然后,他们将这款平面透镜与一个MEMS扫描器(本质上是一个偏转光线用于高速光路长度调制的微镜)的中心平台对齐,通过沉积微小铂片将它们固定在一起,最终将该平面透镜装配在MEMS扫描器上。


“我们这款集成超表面透镜的MEMS原型器件,可以通过电控制改变平面透镜的旋转角度,在几度范围内进行焦点扫描,” Lopez介绍说,“此外,这款集成超表面平面透镜的MEMS扫描器概念验证产品,还可以扩展至可见光及其它光谱范围,开拓更广泛的潜在应用,例如基于MEMS的显微系统、全息和投影成像、LiDAR(激光雷达)扫描器和激光打印等。”


在静电驱动情况下,其MEMS平台可控制两个正交轴方向的透镜运动角度,使平面透镜在每个方向约9度范围内进行焦点扫描。 研究人员估计,其聚焦效率约为85%。


“这种超级透镜在未来可以利用半导体技术实现大规模量产,或将在广泛的应用领域替代传统型透镜,”Capasso补充说。

关键字:MEMS芯片 编辑:王磊 引用地址:哈佛大学联合阿尔贡国家实验室开发基于MEMS芯片的超级透镜

上一篇:2018年全球企业市值100强:苹果登顶,6家半导体企业入选
下一篇:美科学家研发“记忆晶体管”可同时存储和处理信息

推荐阅读最新更新时间:2023-10-13 10:25

向晓波:大力发展半导体MEMS传感器芯片核心技术及产业化
据中国证券网报道,2020年全国两会期间,全国人大代表、中国四联仪器仪表集团有限公司董事长向晓波建议,大力发展我国自主半导体MEMS传感器芯片核心技术与产业化。 据悉,向晓波表示,MEMS半导体传感器已成为“卡脖子”器件,严重制约着我国工业装备安全自主可控发展。 对此,向晓波提出如下建议:    第一,做好产业发展的顶层设计。MEMS传感器产业发展非常需要国家的宏观规划和指导,建议加强顶层设计,将MEMS传感器产业作为一个单独的产业加以研究,出台有战略规划、有实现路径、有推进实施机构、有联动机制的行动方案和发展路线图。    第二,设立跨国及国家级研发项目。组织遴选一批符合实现路径的重点项目,设立重大专项,从国家、行业、地方层
[手机便携]
松下汽车类6轴单芯片MEMS惯性传感器,提高车载系统的安全性和舒适性
据麦姆斯咨询介绍,在当下的“万物电气化(electrification of everything)”时代, 传感器 已成为一个必不可少的先决条件:汽车、巴士、摩托车、无人送货车、建筑机械和许多其它车辆配备越来越多的 传感器 ,以实现安全且舒适的辅助驾驶/自动驾驶。全面的感知能力对于支持运动检测、定位、导航、数据融合等许多用途至关重要。 为此, 松下 机电(Panasonic Industry)开发出汽车类6轴 MEMS 惯性 传感器 系列,即 MEMS 惯性测量单元(IMU),该系列产品通过单芯片解决方案面向车载领域的功能安全(ISO26262)为车身稳定控制、ADAS和自动驾驶等系统提供惯性感知功能,并且符合ASIL-B(
[汽车电子]
松下汽车类6轴单<font color='red'>芯片</font><font color='red'>MEMS</font>惯性传感器,提高车载系统的安全性和舒适性
赛微电子:北京FAB3正推进多款MEMS芯片工艺开发
9月12日,赛微电子在投资者互动平台表示,公司北京FAB3正在同时推进多家客户、多款MEMS芯片产品的工艺开发及晶圆制造,进度不一;不同产品的开发、制造进度受市场机制及技术客观规律所影响。 据了解,赛微电子FAB3的MEMS芯片代工服务领域同样涵盖通讯、生物医疗、工业汽车和消费电子等。FAB3的定位是规模量产线,由于商务洽谈、产品验证、投入量产需要一个客观的过程,FAB3的客户及产品导入也需要时间。从截至目前已经进行的商务合作看,FAB3初期产能将主要由MEMS硅麦、BAW滤波器所构成,后续将根据客户订单陆续增加惯性、压力、气体、红外、光学等MEMS器件。 赛微电子表示,由于MEMS属于一个在万物互联与人工智能时代背景下具备确定
[手机便携]
哈佛大学联合阿尔贡国家实验室开发基于MEMS芯片的超级透镜
将超表面透镜和MEMS技术相结合,或能为光学系统带来高速扫描和增强的聚焦能力。 集成在MEMS扫描器上的基于超表面技术的平面透镜(超级透镜),左图为扫描电镜图片,右图为光学显微成像图片。在MEMS器件上集成超级透镜,将有助于整合高速动态控制和精确波阵面空间控制优势,打造光控制新模型 目前,透镜技术在各个领域都获得了长足的发展,从数码相机到高带宽光纤,再到激光干涉仪引力波天文台 LIGO的仪器设备等。现在,利用标准的计算机芯片制造技术开发出了一种新的透镜技术,或将替代传统曲面透镜复杂的多层结构和几何结构。 与传统曲面透镜不同,基于超表面光学纳米材料的平面透镜相对更轻。当超表面亚波长纳米结构形成某种重复图纹时,它们便
[半导体设计/制造]
基于MEMS的LED芯片封装光学特性分析
本文提出了一种基于MEMS的 LED芯片 封装技术,利用体硅工艺在硅基上形成的凹槽作为封装led芯片的反射腔。分析了反射腔对 LED 的发光强度和光束性能的影响,分析结果表明该反射腔可以提高芯片的发光效率和光束性能;讨论了反射腔的结构参数与芯片发光效率之间的关系。最后设计r封装的工艺流程。利用该封装结构可以降低芯片的封装尺,提高器件的发光效率和散热特性。 图1 LED T1或T1—3/4   经过几十年的发展,LED性能已经得到了极大的进步,由于它具有发光效率高,体积小,寿命长等优点,将成为新一代 照明 光源,被人们公认为是继白炽灯之后照明领域的又一次重大革命。目前LED已经在照明、装饰、显示和汽车等诸多领域得到了广泛的应用
[电源管理]
基于<font color='red'>MEMS</font>的LED<font color='red'>芯片</font>封装光学特性分析
MEMS测试方案促进芯片增产
  大多数用于测量微机电系统性能的仪器,误差非常巨大,以至于无法确定其标准的物理特性,如刚度。   为了解决这个问题,美国国家标准技术研究院( NIST )制定了一套测试程序,采用非接触式光学仪器来检测大型MEMS的结构。除了MEMS的制造商,美国国家标准技术研究院(NIST)也声称CMOS半导体制造商利用它自己的测量方法,可降低失败频率,增加晶片的出产量。   美国国家标准技术研究院把非接触式光学测量仪器连接在一个基于互联网的MEMS计算器上。利用简单有效的光学干涉仪。这个方法使得工程师在光学干涉仪中插入测量值,从而确定其标准的机械性能。   美国国家标准技术研究院的工程师也促成了美国材料测试学会E 2245标
[测试测量]
基于MEMS的LED芯片封装光学特性分析
本文提出了一种基于MEMS的 LED芯片 封装技术,利用体硅工艺在硅基上形成的凹槽作为封装led芯片的反射腔。分析了反射腔对 LED 的发光强度和光束性能的影响,分析结果表明该反射腔可以提高芯片的发光效率和光束性能;讨论了反射腔的结构参数与芯片发光效率之间的关系。最后设计r封装的工艺流程。利用该封装结构可以降低芯片的封装尺,提高器件的发光效率和散热特性。 图1 LED T1或T1—3/4   经过几十年的发展,LED性能已经得到了极大的进步,由于它具有发光效率高,体积小,寿命长等优点,将成为新一代 照明 光源,被人们公认为是继白炽灯之后照明领域的又一次重大革命。目前LED已经在照明、装饰、显示和汽车等诸多领域得到了广泛的应用
[电源管理]
基于<font color='red'>MEMS</font>的LED<font color='red'>芯片</font>封装光学特性分析
压力传感器芯片SCA2095原理及MEMS硅压阻式构造介绍
随着信息处理技术的不断提高,压力传感器芯片的研制与生产工艺的稳定性和可靠性也发生了革新,这在一定程度上推动了其应用发展(压力传感器应用)。那么,对于压力传感器芯片的知识,我们又了解多少呢?小编通过搜集整理资料,对有关压力传感器芯片的分类、原理、结构以及工艺流程等作了简单的归纳总结。下面我们一起来看一下具体介绍吧(压力传感器工作原理)。 压力传感器芯片分类 从材料上讲,压力传感器芯片可以分为:单晶硅的、多晶硅的、陶瓷的、水晶的、金属的、聚酰亚胺的等等; 从原理上讲,压力传感器芯片可以分为:应变式、压阻式、电容式、谐振式等(体重计上一般用的是应变片,应变片一般多为应变式或压阻式)。 压力传感器芯片SCA2095原理介绍
[嵌入式]
小广播
最新半导体设计/制造文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 EDA与IP 电子制造 视频教程

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved