备援系统满足容错操作需求 ECU实现高自动化驾驶

最新更新时间:2018-05-03来源: 新电子关键字:ECU 手机看文章 扫描二维码
随时随地手机看文章

在自动驾驶的发展过程中,安全和可靠度扮演着关键角色。为确定安全关键电子系统即使在故障情况下亦可用,某些备援及安全功能必须保证可用,另外,电子控制单元(ECU)内其中一项主要元件微控制器也必须具备此能力。


依照目前趋势,对先进驾驶辅助系统(ADAS)的需求不断提升,加上自动驾驶技术持续成长,为相关汽车系统在耐用度、可用性和功能安全性等方面带来了新的需求。目前的汽车系统设计,能在发生故障时进入失效安全或故障沉默模式。要实现高级自动驾驶或全自动驾驶,汽车需要高可靠度和高可用性,也就是电子系统需要在故障时继续维持运作(亦即容错操作)。这需要一定程度的备援能力,此外也会对所用的微控制器产生新的需求。新世代AURIX微控制器的架构经过强化,让备援系统拥有更高效能与更独立的CPU核心与记忆体,通讯介面速度更快,外壳也更为轻巧。


目前汽车内的电子系统一般都为故障沉默模式,也就是驾驶必须在故障时接手汽车的控制权。根据第3级和第4级的自动化阶段(按SAE/VDI定义),等到未来高级自动驾驶车推出,驾驶就不再需要于故障时介入,也无法介入,这样一来,驾驶就能在行驶过程中从事其他活动。第5级定义则指完全无驾驶的自动车,这需要完整的备援控制架构,并支援适当的安全标准。


ISO26262护自驾车安全


ISO26262是目前公认的汽车电子系统安全标准,半导体公司都透过此标准来设计安全元件,包括AURIX微控制器、安全感测器、安全电源供应器和变频器驱动器等。ISO26262于2011年推出时,也将重点放在高可用性和故障沉默系统上。未来几年内推出的新版标准(ISO26262第2版)将明确定义容错操作系统的特性,以满足汽车业不断产生的新要求。


系统为执行容错操作功能所需要的系统数量,将视自动化等级及相关错误处理方式而有所不同。目前据报最常出现的错误反应为「10秒内紧急停止,最长不超过30秒」。这些要求层级与下列致动器有关:刹车、转向,甚至是将汽车与驱动引擎或马达解耦。另外,照明和HMI等其他支援致动器也在考量之中,但并非不可或缺。


三重模组备援是一种广为人知的容错操作系统,又名「三选二」(2-out-of-3, 2oo3),系统包含三个对等的执行个体,都执行相同的演算法。


二重备援为主要参考标准


三个系统的输出会相互比对,并用多数票的方式加以评估(图1)。这种方法可同时套用到软体与硬体,为航空业目前所采用的标准。但此方法也存在着难题,也就是票选系统的复杂度和安全性。对ECU等即时系统来说,这会大幅提高相关硬体的复杂度,进而影响整体成本,因此,目前汽车业都以「二重备援」为参考标准。


图1 容错操作系统的三重模组备援。


二重备援架构由两个独立的处理通道组成,每个通道皆为故障沉默通道。(图2)。故障沉默通道通常采用1oo1D架构(单一通道具诊断功能)。二重架构(亦称为「2oo2DFS」)可用对称或非对称备援的方式实作,这类的2oo2DFS架构适用于电子控制单元,尤其是发生故障时,因为只需要考虑两端中的任一端即可进行错误分析。


图2 二重备援能提升容错操作功能实作的成本效益。


刹车系统和转向等应用提供了两种类型的功能:安全关键功能和舒适功能。


由于容错操作系统着重于安全关键功能,而2oo2DFS具备弹性,因此系统能使用非对称的架构,进而将必要元件最佳化。其作法是将较复杂且高效能的通道用在第一通道,然后将较小、符合成本效益的MCU用于第二通道。第一个通道拥有效能较高的MCU,因此可结合舒适功能和安全关键功能。而第二个通道使用较小的MCU,只能涵盖安全关键功能的容错操作要求。


MCU结合安全装置提升系统可用性


高可用性在容错操作系统中扮演重要角色,尤其是同时具备安全关键功能与舒适性相关功能的混合型系统。二重架构的设计用意,就是在发生故障时尽可能维持舒适功能。为此,有厂商开发了一项晶片组架构,将微控制器与支援的安全装置(亦即安全电源供应器)结合在一起,借此提供高系统可用性。


在目前的故障沉默系统中,当安全微控制器侦测到严重错误时,会将错误状况回报至错误脚位,外部支援的安全模组便会检查错误脚位,并在确认错误状况后关闭系统。图3说明系统如何安全地回应错误情况。整个流程是安全的,因为错误情况是回报至外部监控模组,如此可提高系统可用性,此外,微控制器的错误回应也能另外设定。


图3 结合安全供应模组与AURIX微控制器,使容错操作系统拥有高可用性。


此方法由英飞凌提出,能善用AURIX安全管理单元(SMU)的优点,SMU可分别设定各错误来源的回应(中断、NMI、CPU核心重置、CPU核心闲置或SOC重置)。图4说明故障沉默的EPS设计,结合了AURIX微控制器与TLF35584安全供应模组,得以确保高可用性。


图4 含AURIX微控制器和安全供应模组的故障沉默EPS设计。


容错操作耗电/成本挑战高


实作容错操作系统需要一定程度的备援,也会面临空间需求、耗电量和成本等方面的挑战。


新一代的AURIX TC3xx目前提供12 mm×12mm(BGA-196)和14mm×14 mm两种封装(TQFP-100),换句话说,两个BGA-196封装比两个TQFP-100版本更不占空间,体积小了3.6倍,所需要的电路板空间比两个TQFP-100版本少了27%。此外,AURIX的整合式电压稳压器支援切换式CAP DC/DC拓扑,最多可省下两个外接MOSFET和电感器的空间及成本。在此拓扑下,运作耗电量足足减少一半。


如先前所述,采用一大一小的非对称架构,便能使用较符合成本效益的微控制器,进而降低容错转移实作的成本。AURIX系列具备较佳的扩充能力和相容性,因此能同时将高阶和低阶版本运用在同一个设计之中(图5)。安全概念、延迟和其他设计参数均获得保留,更有助于简化设计。此外,选择制造商也能简化供应链,并降低开发与认证成本以及软体开发工具的成本。


图5 含两个AURIX微控制器的容错操作EPS设计,可基于成本考量采用非对称式(一大一小CPU)。


使用AURIX微控制器,可提高容错转移系统的可用性。所有的AURIX微控制器均采用相同的安全概念,并使用进阶的保护机制,像是Lockstep、ECC(错误校正码)受到保护的记忆体,以及前面提到的安全管理单元(SMU)。


新一代AURIX的架构经过最佳化,进一步改善了可用性,核心之间的独立性也获得提升。现在,核心不论在重置、传送或闲置模式下均可个别运作,也就是说,故障的核心可自行重置,其他核心则能继续照常运作。各核心皆能直接存取其专属资源,这样一来,除了容错操作系统(L3/L4),连系统仅需部分备援的L2等级也能一并提升可用性。


最佳化以达到最高安全性


AURIX系列拥有高效能架构和最多六个核心,还有介面、安全性与安全功能,适合汽车业与工业电子市场的多种应用。新架构特别适用于混合式驱动器和变频器、电池管理或电压稳压器。此外,AURIX TC3xx微处理器适用于安全关键应用,适用范围从安全气囊、刹车、动力方向盘应用,到运用雷达或摄影技术的感测器型系统,也能用于高自动等级自动驾驶的网域控制与资料融合应用。


TC3xx系列具备可扩充功能(图6),快闪记忆体容量从1MB到最高16MB,整合式RAM记忆体则从150KB到超过6MB都有。相较于目前最多拥有三个核心的AURIX TC2xx微处理器,TC3xx多核心架构最多可提供六个TriCore CPUS,每个核心皆具备完整的300MHz时脉。


图6 AURIX TC3xx系列可针对不同应用来扩充快闪记忆体、RAM和封装。


自动驾驶需要更快且更安全地连接关键控制单元,包括了中央驱动电脑以及转向或刹车系统。为了满足这项需求,新一代AURIX进一步提升了通讯及安全功能,微控制器提供CAN FD、Flexray和可选购的Gigabit乙太网路介面。Evita硬体安全模组(HSM)可执行符合ECC256及SHA256的非对称加密、不同ECU之间的讯息验证,还有可抵抗恶意软体的安全开机。


TC3xx微控制器支援自动化/自动驾驶和电动车的实作,提供运算速度、安全性及安全功能的理想组合。拥有最多四个Lockstep核心及最多六个核心,可提供符合ISO 26262安全实作要求的极致运算效能:依照ASIL D要求,最多2400 DMIPS可用于应用,前一代装置仅能提供740 DMIPS。AURIX TC3xx世代装置向下相容于TC2xx世代。前导装置TC39x的初代开发模式,具备300MHz时脉、16MB快闪记忆体和6.9MB SRAM,将提供BGA-516和BGA-292两种封装。


(本文作者皆任职于英飞凌)

关键字:ECU 编辑:王磊 引用地址:备援系统满足容错操作需求 ECU实现高自动化驾驶

上一篇:研调:AI产值2022年达3.9万亿美元
下一篇:义隆董座看NB 进入触控笔时代

推荐阅读最新更新时间:2023-10-13 10:30

瑞萨电子携手AVL为客户打造功能安全支持, 推动ISO 26262标准车用ECU的开发
2月17日,商瑞萨电子集团和AVL宣布,将共同为客户提供支持,助力开发符合ISO 26262国际汽车功能安全标准的电子控制单元(ECU)。基于此项合作,AVL将为瑞萨汽车领域客户开发更高性能的功能安全系统提供全面的支持。 高效地开发符合功能安全标准的先进驾驶辅助系统(ADAS)/自动驾驶(AD)系统已成为一项挑战。为此,瑞萨针对ISO 26262的ASIL B至ASIL D安全等级推出车载R-Car片上系统(SoC)、RH850微控制器(MCU)、电源管理IC(PMIC)和软件解决方案。然而,为了满足功能安全要求,包括半导体器件在内的整个ECU系统都必须符合相关标准。因此,即使使用符合功能安全要求的R-Car和RH850等产品
[汽车电子]
汽车区域架构优势详述
不妨将一辆乘用车想象为多个电子控制单元(ECU)的集合,它们分布在汽车的各个位置并使用不同网络相互通信。为实现车联网(V2X)、自动驾驶和汽车电气化而添加更多先进的汽车电子产品时,ECU数量和交换数据量也都会增加。 此外,ECU数量的增加还促进了网络类型的多样化,包括本地互联网络(LIN)、控制器局域网(CAN)以及诸如平板显示器链路(FPD-Link)、PCI Express(PCIe)和以太网等高速网络。 在域架构中,ECU可根据功能不同分为不同的域。但区域架构是一种按照ECU在汽车内的实际位置分类的新方法,并利用中央网关来管理通信。这种物理接近性可减少ECU之间的布线,从而节省空间并降低汽车重量,同时还能提高处理器速
[嵌入式]
汽车区域架构优势详述
选取汽车信息娱乐系统中音频放大器时,有哪些因素需考虑
您是否了解所有融入当今新车的最新技术?这些技术振奋人心,其中一些技术已经应用于入门级和经济型车辆中: 可对带紧急制动系统的自动制动汽车发出前向碰撞警告,可避免前方汽车突然停止时发生追尾事故。 可自动将汽车完美送回纵列式停车位的高级驻车引导系统。 车道保持辅助技术可让您的座椅振动,提醒您正通过车道漂移;它甚至可自动控制驾驶,以确保您的汽车保持在白线内。 新的信息娱乐系统(图1)处理目前车辆内的导航、音乐、广播和流媒体服务。客户主要购买的是中档或入门级汽车,他们自然而然地期望信息娱乐系统能和我们的智能手机和平板电脑一样拥有大型液晶显示屏(LCD)触摸屏。他们还期望汽车能够支持蓝牙®和/或Wi-Fi®,以便他们可播放音乐
[嵌入式]
选取汽车信息娱乐系统中音频放大器时,有哪些因素需考虑
嵌入式线控驾驶系统开发过程中设计和测试考虑
由于有了基于模型的设计,使得开发大量的汽车嵌入式系统时,可以由模型自动生成最终编译的软件。不过,这项工作需要一个软件工程框架的支持。本文使用线控驾驶系统(steer-by-wire system)作为实例,给出了设计汽车嵌入式系统的过程、方法和测试工具的一个框架。 近来,有报道称包括Denso、Motorola和Toyota在内的不同行业的多家公司都在产品代码方面取得了成功。这项技术正日益成为软件下一波演进发展中的一个重要组成部分。虽然总体而言,它对软件工程化过程的影响已为业界所了解,但却并没有十分清楚地确立起来。对于早前类似演进发展(包括从机器代码发展到汇编代码,再发展到源代码)的参与者而言,这一点尤为明显。 随着抽象与自动化
[嵌入式]
汽车电子改装ECU会影响发动机寿命吗?
原厂的发动机ECU设定,会考虑车辆的尾气排放指标、燃油经济性、耐用性等问题,是相对保守的。对于动力有所要求的车主,可以通过合理的ECU升级改装,更加精确的控制发动机的运行,提升动力性能。 近年来国内改装市场的逐渐成熟,提升车辆的动力性能的改装早已不是最初只涉及到基本的进排气、点火等入门级改装了。使用涡轮/机械增压器亦或是采用高压缩比等方法来达到高转速大马力的自然进气发动机的改装也早已不是什么新鲜事。 不同于过去的化油器时代,现在汽车的动力单元的总指挥是发动机ECU,一台车的硬件设备再完美,缺少一个合格的ECU也是无法运行的,改装ECU就是通过一些手段将原厂保守的ECU程序改写,从而实现提升发动机某方面性能的目的。大家在改装
[嵌入式]
博世/NXP/瑞发科等大咖为你解读:汽车发展的终极形态
“未来汽车就是加上四个轮子的智能手机”这种观点已经不算新鲜,我们可以想象科技的变化给汽车带来的变化,然而这个观点背后,到底又是哪些科技在支撑呢?2018年1月11日在上海举办的“2018智能网联汽车电子电气架构创新技术论坛”中,我们能找到一些答案。(该论坛由 嘉之道 汽车主办、中国汽车电子基础软件自主研发与产业化联盟、上海机动车检测认证技术研究中心有限公司联合主办。与非网是此次活动的战略合作媒体。)       汽车为什么需要 电子电气构架 ? 泛亚汽车技术中心硬件开发经理杨玉良在演讲中表示:“传统汽车开发周期三到四年,而现在学习互联网模式,那这个周期只需要两年,电子架构在项目之初就已经设计好,这样的开发才更有效率。”目前汽车正
[嵌入式]
如何缩短ECU测试时间及提升测试效能的各种功能
汽车电力系统的不当调节,会导致经常发生电压骤降和过击的现象。在正常的情况下,电压的范围会介于11 到15 伏特之间,而在暂态开始和执行的情况下,则会介于8 到24 伏特之间。因此,在测试引擎控制单元(ECU)时必须执行电压边限测试,以验证在极端的偏压电压情况下能否正常操作,以及容许度有多大。 在竞争激烈的汽车电子市场,测试时间是分秒必争的。在多个偏压电压位准下进行测试,是ECU 测试中一项必要但费时的操作。大多数的系统直流电源在变换新的输出设定及使其稳定上都需要花很长的时间,导致总测试时间也跟着增加。本文以安捷伦科技的N6700模组式电源系统和N6752A 电源供应器模组为例说明如何缩短ECU测试时间及提升测试效能的各种功能 EC
[测试测量]
如何缩短<font color='red'>ECU</font>测试时间及提升测试效能的各种功能
USB在汽车电子中的应用
  20世纪末,毋庸置疑最成功、最广泛使用的串行接口就是通用串行总线(USB)了。其成功的秘诀是使其简单化、实用化及大众化。表面上,设计者能选择的标准化物理连接器仅有几个。连接器本身表明了USB应用(即主机或设备)的“风格”。利用这个简单的四线接口(VCC、D+、 D-、 GND),提供了一个功率为2.5W以及串行数据时钟速率为480MBps的节点。该标准在一个总线上能支持127个设备。协议包括一个“即插即用”功能,这有利于软件和驱动器的握手和兼容性。正是由于这些特点,才使得USB1.0在1996年得到了迅速采用,1998年修订为1.1,后来在2000年4月又增强到2.0修订版。   2007年,USB设备的安装量达到了10亿
[嵌入式]
小广播
最新半导体设计/制造文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 EDA与IP 电子制造 视频教程

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved