LT1468是Analogue Linear Technology公司新设计的单个可折叠式共射型运算放大器。利用LT1468可以克服其它类型放大器带宽窄、转换速率低和建立时间等缺陷。LT1468运算放大器可应用于16位系统,且能有效抑制滤波器和仪器本身精度所带来的失真。
1 LT1456简介
1.1 特点
LT1468是一个可用于16位系统的单个运算放大器,其精度和速度均已实现了最优化设计。LT1468的工作电压为15V,最大输入失调电压为±75μV,反相端的最大偏置电流为10nA,同相端为40nA,最小直流增益为1V/μV,其主要技术参数如表1所列。
表1 LT1468主要技术参数
输入失调电压VIO | 75μV max |
反相输入偏置电流 | 10nA max |
同相输入偏置电流 | 40nA max |
开环电压增益Avd | 1V/μV min |
共模抑制比CMRR | 96dB min |
输入噪声电流IN | 0.6pA/(Hz)1/2 |
输入噪声电压VN | 5nV/(Hz)1/2 |
带宽 | 90MHz |
转换速率SR | 22V/μs |
谐波失真THD | -96.5dB |
建立时间Ts | 1.7μs |
瞬态响应建立时间 | 900ns |
电源电流(Vs=±15V) | 5.2mA max |
1.2 工作过程
LT1468的内部电路如图1所示,主要分为差分输入、增益放大和输出三部分。
差分输入由PNP晶体管T1、T2组成。其偏置电流来源于电流源I7和T12,它们可以互相低消。I7可实现对反相输入电流的微调。输入电流中的100Ω电阻及背对背二极管D1、D2起保护T1、T2的作用。电流源I3、I4和晶体管T3、T4组成T1、T2的恒流源集电极负载,而T5、T6则可构成差动输入级的高阻抗负载。
电压放大级由T5、T6、T7等组成。T5这种接法可以将T5集电极电压转化成T6的基极驱动电压,在T6集电极有一单端输出电压,这使得差分电路两边的电流信号都能得到利用。尽管是单端电路两边的电流信号都能得到利用。尽管是单端输出,但是电压增益与双端输出一样高。同时,为增加这一级的增益,T5、T6的镜电流由紧跟其后的T7和电流源I2进行自举。通过改变I2大小可使T7工作在T5、T6集电极电流的2倍,T7的基极电流可由T5、T6来平衡。这种平衡设计的最大优点是减小了失调电压的漂移。
输出电路由T8~R11和I5、I6组成。T10、T11组成互补推挽电路,T7发射极到输出端的通路具有对称的电流增益,因为在此电路中既有PNP管又有NPN管,可消除互被输出极的交流失真干扰。这种平衡设计大大降低了二次谐波失真。
2 LT1468在16位系统中的应用
2.1 I/V转换
用LT1468与16位DAC来实现I/V转换的电路如图2所示。LT1468的最小建立时间受限于DAC的输出端电容COUT,COUT变化范围为70pF~115pF,其值主要由编码决定。电容CPUT与反馈电阻RF构成了闭环频率响应的一个零点,若无反馈电容CF,电路将出现振荡。CF的选择相当于给电路增加了一个极点,从而使电路稳定,其大小可用来优化运放的建立时间。对16位精度而言,建立时间理论上的极限值是时间常数RFCF的11.1倍,即1.332μs。图2所示电路的建立时间为1.7μs,与理论上的极限值已非常接近。LTC1597是电流输出型DAC,其参考输入电压为10V,最低有效位LSB为25.4nA,经LT1468转化成153μV;满刻度1.67mA,对应放大器的输出为10V。
2.2 ADC缓冲器
图3为TL1468放大器的另一个重要应用,即作为A/D的采样缓冲器。这要求放大器必须具有低噪音和低失真特性,LT1468恰能满足这样的要求。16位的LTC1604在SNR=90dB,其输入端的噪声为56μVRMS,图3所示运放噪声为15μVRMS。LTC1604和总谐波失真THD在100Hz时为94dB。此缓冲/滤波器只含二次及三次谐波,故不会降低ADC的性能, 且此缓冲/滤波器还能在电源阻抗较低时驱动ADC,如果没有缓冲/滤波器,LTC1604的采样速率的降低。而使用低噪音和低失真的LT1468缓冲/滤波器。即使在高电源阻抗时,ADC仍能以最大速率进行采样。
随着16位A/D、D/A的广泛使用,建立时间短、噪音低、失真小的LT1468必将有着广阔的应用前景。
上一篇:小信号双线变送器XTR101的原理和应用
下一篇:新一代晶闸管触发模块KTM2011A的原理及应用
- 热门资源推荐
- 热门放大器推荐
- 欧洲三大芯片巨头,重新审视供应链
- 一场IC设计业盛宴!10场论坛 200位演讲嘉宾,300+展商亮相2万平米专业展会!
- 富昌电子于杭州举办技术日活动,聚焦新能源“芯”机遇
- 消息称铠侠最快明天获上市批准,市值有望达 7500 亿日元
- 美国政府敲定对格芯 15 亿美元《CHIPS》法案补贴,支持后者提升在美产能
- SK 海力士宣布量产全球最高的 321 层 1Tb TLC 4D NAND 闪存,计划 2025 上半年对外出货
- 三星电子 NRD-K 半导体研发综合体进机,将导入 ASML High NA EUV 光刻设备
- 芯片大混战将启:高通、联发科涉足笔记本,AMD 被曝入局手机
- Exynos 2600 芯片成关键,消息称三星将打响 2nm 芯片反击战
- 【EE团】ST最新STM32F429i高性能开发板重磅登场
- TI 无线产品调查问卷,380份好礼等你领!
- 有奖调查——We want you!好的参考设计网站什么样?
- 高性能手机设计如何实现?手机高校评估研讨会为您揭晓答案!
- 福禄克首款热成像万用表Fluke-279FC等你来尝鲜!晒心得享好礼喽!
- ADI有奖下载活动之6 ADI基于IEC61850的智能电子设备(IED)系统解决方案
- 显摆!我最得意的MSP430作品
- 沁恒CH579M-R1开发板免费测评,丰富外设等你体验
- Littelfuse【智能家居的电路保护方案】在线研讨会 11月22日10点 强势登场!预报名、参与研讨会赢好礼!
- 创通联达高通 IOT 平台解决方案及成功案例|报名直播赢【蓝牙耳机、音箱、京东卡】等好礼
- stm32 外部中断 按键的误触发
- stm32f103应用rt-thread 1.2.5搭建的Keil工程
- stm32在rt-thread上的RTC(实时时钟)
- stm32在rt-thread上的PWR(电源管理)
- STM32F103ZET6 — PWM(TIM1)
- STM8 HSI与HSE自动切换时钟源
- 基于STM32f103的I2C通信接口的EPPROM模块(24C256)读写程序详解1
- 基于STM32f103的I2C通信接口的EPPROM模块(24C256)读写程序详解2
- 【库函数版本】基于STM32F103的MPU6050的原始数据读取程序详解
- 【STM32F103攻城笔记】STM32之MDK(Keil)环境搭建(一)