基于ARM单片机LPC2148的音频分析仪设计

发布者:梦中徐来最新更新时间:2009-12-08 来源: 电子元器件应用关键字:LPC2148  音频分析仪  AD转换 手机看文章 扫描二维码
随时随地手机看文章

0 引言

    随着微电子和信息技术的快速发展,以单片机为代表的数字技术发展日新月异。单片机由于具有体积小、功耗低、控制功能强、扩展灵活、微型化和使用方便等优点,而广泛应用于各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理。事实上,通过采用单片机来进行控制,可以实现仪器仪表的数字化、智能化和微型化。本文通过对比选择采用了LPC2148芯片解决方案来实现音频分析仪的设计。

1 系统分析与选择

1.1 信号处理原理分析

    在对音频信号进行分析的过程中,本文采用了快速傅立叶变换FFT算法,即首先对音频信号进行离散化处理,然后进行FFT运算,求出信号各个离散频率点的功率数值,并得到离散化的功率谱,最后在频域计算被测音频信号的总功率。

1.2 系统的选择

    在处理器的选择上,通常可以选择8位、16位或者是32位的MCU。但是,由于在处理信号的过程中,通常会用到快速傅立叶变换FFF算法,所以需要进行大量的浮点运算,而且一个浮点要占用四个字节,故在处理过程要占用大量的内存,同时浮点运算时间也很慢,所以采用普通的8位MCU和16位MCU一般难以在一定的时间内完成运算。综合考虑系统内存的大小以及运算速度,本系统选用Philips公司的32位单片机LPC2148。该芯片具有32 KB的RAM,而时钟频率高达60 MHz,所以,对于浮点运算,不论是在速度上,还是在内存上都能够很快的处理。在信号采样方式上,由于本系统所选用的32位MCU芯片LPC2148是60 MHz的单指令周期处理器,定时精度为16.7 ns,可以实现40.96 kHz的采样率,而且控制方便,成本便宜,所以,本设计由MCU进行直接采样,而不采用DDS芯片配合FIFO对信号进行采集。

2 系统设计

2.1 总体设计

    在系统总体设计中,音频信号的采样过程非常关键。当音频信号经过一个由运放和电阻组成的匹配网络进行采样时,首先要由量程控制模块对信号进行处理,如果信号电压在100 mV~5 V的范围内选择直通,也就是不对信号进行衰减或者放大控制,则可减少误差。但是,当信号强度太小时,12位的A/D转换器在2.5 V参考电压下的最小分辨率为1 mV左右,这时如果选择直通,其离散化处理的误差将会非常大。因此,当采集到信号后,若发现其强度太小,如在20~250 mV之间,这时就应该将其认定为弱信号,故应对其经过增益放大器放大之后再进行A/D采样。

    经过12位A/D转换器ADS7819转换后的数字信号可由32位LPC2148进行FFT变换和处理,以分析其频谱特性和各个频率点的功率值,然后将这些值送到Atmega16进行显示控制。信号由32位LPC2148分析后,可判断其周期性,可由Atme-gal6进行测量,然后在LCD显示屏上显示,其功能框图如图1所示。

2.2 放大电路设计

    当信号输入后,首先要根据信号强弱进行放大处理,图2所示是其放大电路原理图。该放大电路通过R1和R2两个电阻和一个高精度仪表运放AD620实现跟随功能,并在进行阻抗匹配后。通过继电器控制来决定是将信号直接送给AD转换还是放大后再进行AD转换。

    由于需要对音频信号的频率及其功率进行检测,并且要测量正弦信号的失真度,因此要求在对小信号进行放大时,要尽可能少的引入信号的放大失真。正弦信号的理论计算失真度为0,对引入的信号失真非常灵敏,所以,本设计选择了低噪声、低失真的仪表放大器INA217,以将失真度控制在1 kHz频率之内。

2.3 AD转换电路设计

    本系统采用12位AD转换器ADS7819来对信号进行转换,并将转换的数据送往32位控制器进行处理,其转换电路原理图如图3所示。

3 软件设计

    由于系统主控芯片LPC2148的处理速度比较快,所以,软件设计采用C语言来进行编程比较简单快捷,其软件设计流程图如图4所示。

4 结果分析

    笔者对本系统的音频信号进行了测量,并得到了如表1所列的数据。由于实验室能够模仿的音频信号只有正弦信号,所以,实验采用信号发生器来产生正弦信号,然后对其进行测量和误差分析,根据时域和频域的测量结果可以发现,其测量误差在5%的范围之内,且没有发现明显失真,基本可以满足实验的测量要求。

5 结束语

    经过实验检验,本系统架构设计合理,功能电路较好,系统性能优良、稳定,系统设计基本可以满足音频分析的基本要求,且误差较小。但是,由于音频信号有多个频点,没有一定的规律性,因而导致测量过程中音频信号波动较大,这一点在应用过程中,还要对系统进行进一步的改进和完善。

关键字:LPC2148  音频分析仪  AD转换 引用地址:基于ARM单片机LPC2148的音频分析仪设计

上一篇:基于ARM的多通道专业MP3播放器设计
下一篇:基于ARM+FPGA的大屏幕显示器控制系统设计

推荐阅读最新更新时间:2024-03-16 12:27

单片机与串行AD转换器TLC0834的接口设计
摘要:TLC0834是TI公司生产的八位逐次逼近模数转换器,具有输入可配置的多通道多路器和串行输入方式。文中以AT89C51 CPU为核心,采用LTC0834八位串行A/D转换器设计了一个可将模拟信号转换为数字信号的电路。 关键词:单片机 A/D转换器 TLC0834 单片机控制系统通常要用到A/D转换。根据输出的信号格式,比较常用的A/D转换方式可分为并行A/D和串行A/D。并行方式一般在转换后可直接接收,但芯片的引脚比较多;串行方式所用芯片引脚少,封装小,在PCB板上占用的空间也小,但需要软件处理才能得到所需要的数据。 图1 TLC0834的工作时序图 1 TLC0834简介 1.1 TLC0834的主要特点 TL
[应用]
多路数据采集系统的设计与实现
0 引言 随着物联网技术的发展与应用,A/D数据采集是其中一项重要的研究课题,A/D多路采集系统实现方案可以多种,通过对三种实现方案进行比较,最终采用STM32系列ARM芯片进行设计。STM32是基于ARM Cortex-M3内核的32位处理器,具有杰出的功耗控制以及众多的外设,并具有极高的性价比,目前正逐渐抢占了电子领域原有的51、AVR的市场。本设计中采用STM32F103RBT6作为主控制器,该芯片配置丰富,便于今后的系统功能扩展。 1 方案比较与论证 为实现多路数据采集要求,提出如下三种设计方案: (1)基于单片机的数据采集系统 本方案采用双单片机的方法,即在数据采集的远端、近端均采用单片机控制,远端完成
[单片机]
多路数据采集系统的设计与实现
PIC单片机A/D转换数据存储效率的提升
  本文提出一种数据打包的方法, 使得相同的数据量占用较少的存储空间, 并可提高传输效率。   引言   在由单片机和PC 机构成的检测系统中, 通常会由多个单片机采集数据并将经过A/D 转换的数据通过串口送往上位PC 机进行数据处理。PIC 单片机A/D 转换后的结果大多是8 位或10 位的, 8 位的A/D转换不涉及该问题。以10 位的数据为例, 在单片机内进行存储时需要占用2 个8 位的字节, 低8 位和高2位分别存储在2 个字节中, 但是用于存储高位数据的8 位宽的RAM 单元中仅有2 位是有效数据。   单片机的存储空间有限, 以PIC16F877 单片机为例, RAM 数据存储器按功能分为通用寄存器和特殊功能寄存
[单片机]
低成本AD转换器电路图
低成本A,D转换器电路图
[模拟电子]
低成本<font color='red'>AD转换</font>器电路图
8位AD转换器电路图
8位A,D转换器电路图
[模拟电子]
8位<font color='red'>AD转换</font>器电路图
S3C2410 普通AD转换
一、AD转换基本原理 AD(Analog to Digital) 意思是:模—数转换,它是外部世界模拟信号和计算机之间联系的接口。它将连续变化的模拟信号转换为数字信号,以便计算机和数字系统进行处理、存储、控制和显示。 AD转换器是用来通过一定的电路将模拟量转变为数字量。模拟量可以是电压、电流等电信号,也可以是压力、温度、湿度、位移、声音等非电信号。但在AD转换前,输入到AD转换器的输入信号必须经各种传感器把各种物理量转换成电压信号。AD转换后,输出的数字信号可以有8位、10位、12位、14位、16位等。 S3C2410/S3C2440的CMOS模数转换器可以接收8个通道的模拟信号输入,并将它们转换为10位的二进制数据。
[单片机]
锂离子电池智能充电器硬件的设计(图)
  锂离子电池具有较高的能量重量和能量体积比,无记忆效应,可重复充电次数多,使用寿命长,价格也越来越低。一个良好的充电器可使电池具有较长的寿命。利用C8051F310单片机设计的智能充电器,具有较高的测量精度,可很好的控制充电电流的大小,适时的调整,并可根据充电的状态判断充电的时间,及时终止充电,以避免电池的过充。   本文讨论使用C8051F310器件设计锂离子电池充电器的。利用PWM脉宽调制产生可用软件控制的充电电源,以适应不同阶段的充电电流的要求。温度传感器对电池温度进行监测,并通过AD转换和相关计算检测电池充电电压和电流,以判断电池到达哪个阶段。使电池具有更长的使用寿命,更有效的充电方法。    设计过程    1
[电源管理]
锂离子电池智能充电器硬件的设计(图)
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved