基于ARM的汽车安全气囊控制系统设计

发布者:梦幻微笑最新更新时间:2012-05-10 来源: 中国计量测控网 关键字:ARM  汽车安全  气囊控制系统 手机看文章 扫描二维码
随时随地手机看文章

  引言

  随着汽车的普及和行驶速度的加快,交通事故及伤亡人数也在逐年上升。在发生汽车碰撞事故时,如何有效地保护司机和乘员生命的安全是迫切需要解决的问题。安全气囊作为与安全带配合使用的被动保护装置已经普及,成为汽车构件中保护乘员的主要装备之一。

  气囊控制系统可分为机械式、模拟电子式和嵌入式3种类型。对于机械式和模拟电子式控制系统,由于硬件的局限,灵活性受到很大限制,应用日益减少。新一代的气囊控制系统均为带微控制器的嵌入式控制系统。嵌入式控制系统的控制算法由软件实现,极大地提高了系统的灵活性,并具有记录事故数据和与上位机进行通讯的功能。

  汽车的安全气囊要求能在一个极短的时间内检测到汽车碰撞事故的发生并控制气囊启爆。为了实现上述目标,要求安全气囊控制系统的微控制器运算能力强、I/O口充足。基于此,选择高性能的32位微控制器,研究并开发出较为实用的汽车安全气囊控制系统,具有一定的应用和参考价值。本文在对国内外先进控制系统研究的基础上,提出了基于ARMCortexM3内核32位微控制器的汽车安全气囊控制系统的设计方案,并分别进行了台车和实车试验。

  1 ARMCortexM3内核与微控制器LM3S1138

  ARM公司面向低成本应用领域研发出32位CortexM3内核处理器。该处理器有效地利用芯片空间,高度集成了外设,与内核组成了一个片上系统(SoC)。ARMCortexM3处理器结合了Thumb2指令32位哈佛微体系结构。Thumb2技术提高了代码密度,比32位编码减少了26%内存使用率,较16位编码提高了25%性能。通过降低时钟频率,提供更低的功耗,降低了研发成本,提高了企业效率。芯片上实现了Tail-Chaining中断技术,该技术把中断之间的延迟缩短到6个机器周期,在实际应用中可减少70%中断。

  本系统微处理器选用TI公司基于ARMCortexM3内核的LM3S1138工业级微控制器。其工作温度范围是-40~85°C,并具有良好的电磁兼容特性,可应用于汽车电子领域。

  2 系统工作原理与设计

  2.1 系统的工作原理

  安全气囊控制系统主要由传感器、自检电路、触发电路、通讯电路和报警电路组成,如图1所示。

  其工作原理为:上电后,系统进行自检,确定触发电路是否可以正常工作。若触发电路存在故障,报警电路进行声光报警,表明系统无法正常工作,通知驾驶员及时修理。当自检正常时,通过32位微处理器LM3S1138不断对加速度传感器MMA7260测得的信号进行采样。当汽车受到一定角度内的高速碰撞时,系统在经过算法分析确认之后,立即触发气囊包内的点火器,气囊迅速充满气体,阻挡驾驶员与汽车构件之间可能发生的碰撞,通过气囊上排气孔的节流阻尼作用来缓冲吸收驾驶员动能,从而达到保护驾驶员安全的目的。

  2.2 系统的硬件设计

  2.2.1 加速度测量电路

  本文选择飞思卡尔公司的硅电容加速度传感器MMA7260。它具有信号放大调理、低通滤波和补偿功能。该器件的零加速度偏置、满量程范围和滤波特性均由制造厂家调定,不需要外接无源元件。由于该传感器制作工艺上的高集成度和可靠性,最大程度地降低了外界的干扰。MMA7260直接采用IC集成封装,可直接焊在PCB板上,调试方便。

  LM3S1138处理器内置8通道10位ADC,采样速率可达1M/s,精度足够用于安全气囊。传感器测得加速度后,从相应的输出管脚输出电压值。通过LM3S1138处理器内置的ADC对电压值进行模数转换,再存入到软件设定的数组中。

  加速度测量电路的硬件原理图如图2所示。

  本系统只使用MMA7260三轴加速度传感的X和Z两轴来进行水平方向的碰撞判断。X轴方向测量汽车正面碰撞的加速度,Z轴方向测量汽车垂直方向的加速度。当汽车高速驶过沟、坎路面时,会导致传感器即使在没有发生碰撞的情况下,也产生较大信号。此信号叠加在低速碰撞的碰撞波形上,导致微控制器误认为高速碰撞,进而发生误启爆。鉴于此,当汽车Z轴(垂直方向)。产生较大的加速度时,无论X轴方向加速度如何,安全气囊均设计为不启爆。避免了因为汽车高速驶过地面路障时,安全气囊引爆所造成的不必要的损失,增强了路面抗干扰性。

  2.2.2 点火触发电路

  由于气囊气体发生器的点爆时需20mA电流脉冲。若直接用LM3S1138的I/O口输出高电平进行引爆,驱动过小,无法满足要求。系统选用电磁式继电器,在LM3S1138输出口的控制下可驱动大功率的负载。由于继电器会产生较明显的干扰,故在继电器周围加抗干扰电路的同时与光电耦合器配合使用,使得处理器与触发电路光电隔离。当碰撞发生时,安全气囊对身材过于矮小的成年人或儿童不但没有保护作用,引爆的巨大冲击力甚至会将其弹死。为了更好地实现安全点火和智能化点火,系统在触发回路上设置一个座位压力感应装置。如果有成年人入座,则装置闭合,点火电路可正常工作。相反,如果装置断开,则表明无人入座或只有矮小成年人或儿童入座,触发电路不能形成回路。此时,即使汽车发生碰撞且算法发出点火信号,安全气囊也不爆破。这样,既防止在无人入座的状态下引爆气囊而造成的经济损失,又避免了气囊对矮小成年人和儿童造成的伤害。点火触发电路的原理图如图3所示。

  2.3 系统的软件设计

  针对LM3S1138等一系列的微控制器,TI官方免费提供了基于C语言(符合ANSIC标准)。的驱动库,它包含了众多固件函数库,对每一个外设都有相应例程,可以很方便地根据应用需要进行修改和移植。因此在软件编程时,无需汇编程序的软件管理,完全可以用驱动库C语言函数进行编程开发。开发应用程序时,利用驱动库的例程进行模块化设计,不仅程序编写方便,而且代码简洁且可读性强。对编写大型程序而言,采用驱动库能增强可靠性和安全性,同时降低维护成本。故本系统软件程序利用TI公司提供的驱动库例程进行模块化程序设计,把整个系统程序分为若干个小程序或模块,分别进行独立设计、编程和测试。最后将各模块构建一个完整的工程,完成应用程序设计。将整个工程分成了主程序、启动任务、定时采样任务和串行通信任务等4大模块。流程图如图4所示。[page]


  2.3.1 主程序模块

  为增加系统的执行效率,实现多任务程序运行,系统通过移植,嵌入了μC/OS-Ⅱ操作系统。程序流程图中启动任务模块为嵌入μC/OS-Ⅱ操作系统时程序常用模式。

  2.3.2 启动任务模块

  在程序运行时,先执行启动任务,然后根据按键情况,执行通讯任务或定时采样任务。

  2.3.3 定时采样模块

  软件中实现每1s采样一次加速度并做A/D转换,存储在Flash中。若发生了撞车事故并符合算法的点火条件,记录当前数据存放地址,适时发出点火指令,启爆气囊,同时,再采样90个数据点。在分析现场时,碰撞前的90个数据和撞车后的90个数据可记录在LM3S1138内置的Flash中,作为黑匣子信息分析事故原因。

  本系统选用加入垂直量的移动窗积分算法。由于篇幅所限,将在后续文章中论述。

  2.3.4 串行通讯模块

  事故发生后,PC机通过串行口读出气囊控制系统黑匣子中的数据,作为分析事故之用。开发人员可自行设置读取黑匣子水平方向加速度和垂直方向加速度数据的密码。

  3 性能试验

  目前汽车业内普遍采用的是5英寸(1英寸=254cm)30ms准则来确定安全气囊的最佳点火时刻。在汽车碰撞过程中,乘员相对于车体向前移动5英寸时刻的前30ms是气囊的最佳点火时刻。其依据是大多数已系好安全带的轿车乘员与转向盘之间的间距为12英寸,气囊充气后的厚度为约为7英寸,气囊从点爆到充满气体的时间为30ms。当气袋充满气体的时刻乘员恰好与气袋接触,气囊保护作用最佳。若气囊点火过早,当乘员接触到气囊时,气囊已泄气,起不到保护作用。

  当气囊点火过晚,乘员由于惯性前移,气囊会把乘员打伤甚至致死。所以最佳点火时间是设计安全气囊控制器的关键。而本系统利用积分窗算法和ARMCortex处理器相结合,取得了较好的效果,试验结果和该准则基本吻合。

  3.1 台车试验

  台车试验在南昌大学科技学院汽车碰撞实验室进行,如图5所示。碰撞后,乘员身体前移的时刻比碰撞时刻滞后。滞后的大小主要取决于某款车型的吸能性能。由于台车上只有安全气囊控制系统,并无任何吸能装置,吸能几乎为零。故在本试验中,认为碰撞时刻即为乘员开始前移的时刻。台车在滑行轨道上由绳索牵引。时速由40km/h逐渐递增到60km/h。试验过程由高速摄像机录制,通过慢放录像,测得在碰撞时刻后气囊打开时刻。数据如表1所示。


  试验数据表明,气囊打开时刻与最佳点火时刻偏差很小,在此偏差内不会发生气囊弹伤乘员或过早漏气的现象。

  3.2 实车试验

  在国家某机动车检测中心,用某型号国产轿车进行了实车试验。碰撞类型为正面碰撞。驾驶员座椅上放置了假人,且已系好安全带。碰撞时速为60km/h。碰撞对象为蜂窝铝。假人传感器数采系统采样频率为1kHz。通过前期试验可知,该款车型的吸能形变过程约持续50ms,故在实车试验前,对气囊控制系统的程序进行了相应修改。试验现场录像截图如图6所示。

  通过现场放置的高速摄像机录像的回放,可知乘员在向前移动了30ms后,安全气囊准确爆破。实车试验表明,安全系统控制系统可较为准确地控制气囊的最佳点火时刻。

  4 结语

  由于安全气囊要求在极短的时间内对碰撞事故作出处理,因此要求控制系统能在瞬间完成实时处理和复杂运算的过程,即要求其具有较高的运算速度,时滞较小,以适应汽车安全气囊的实时控制要求。而一般的8位单片机编程简单,易于应用,但信号处理能力不强。本系统采用基于ARMCortexM3内核的32位高性能微控制器LM3S1138,嵌入μC/OS-Ⅱ操作系统,利用移动积分窗爆破算法,完成了系统设计。台车试验和实车试验表明,本系统可较为准确的控制气囊的最佳点火时刻,从而有效保护驾驶员的安全。系统软件设计部分使用了TI官方免费提供的驱动库,采用模块化设计,简化了开发过程。LM3S1138微控制器是片上系统(SoC)。集成了ADC、模拟比较器、flash存储器等外设资源并且价格低廉,故构建的系统集成度高、体积小、成本低。LM3S1138多达46个I/O口,增加了系统的可扩展性,可在此基础上研发多级智能型汽车安全气囊控制系统。

关键字:ARM  汽车安全  气囊控制系统 引用地址:基于ARM的汽车安全气囊控制系统设计

上一篇:基于C8051F020的实时检测和车辆散热系统参数测试电路设计
下一篇:超声波倒车防撞系统

推荐阅读最新更新时间:2024-03-16 12:59

快速学Arm(21)--中断向量VIC控制器VIC[3]
说是快速学习,其实也不快,学这东西想快起来看了不太容易. 有很多中中断源都有可能产生中断,对于2400大概有下面的中断源 中断源 VIC通道号 WDT 0 --保留给软件中断 1 ARM Core 2 ARM Core 3 TIMER0 4 TIMER1 5 UART0 6 UART1 7 PWM0,PWM1 8 I2C0 9 SPI,SSP0
[单片机]
快速学<font color='red'>Arm</font>(21)--中断向量VIC控制器VIC[3]
分析称Arm将会成为华为云计算越来越重要的合作伙伴
近日,知名通信行业媒体lightreading分析,华为和Arm的良好合作不但规避了美国的技术制裁,而且华为在俄罗斯的数据中心也将承担越来越重要的任务。 文章认为,大型数据中心的服务器通常采用英特尔或者AMD基于x86架构的芯片。但去年夏天,华为在莫斯科设立了数据中心,因为各种复杂的原因,这一举动可能得到意想不到的获利。    美国对华为的制裁导致很多供应商对华为断供,而在移动端存在感很强的Arm架构让华为受惠颇多。在俄乌冲突和西方对俄制裁的大背景下,华为的莫斯科数据中心突然承担了一个更重要的角色。    文章指出,网络基础设施所支撑的云业务似乎正在蓬勃发展。华为没有公布业绩,也没有公布2021年的主要商业数据,但包括云计算在内
[半导体设计/制造]
ARM与GPU构建百亿亿次超级计算机畅想
在过去的SC11大会上,我们已经看到多个与ARM服务器相关的产品,例如ARM芯片新贵Calxeda宣布其能耗为5瓦的EnergyCore ARM芯片,以及该公司与x86服务器巨头HP的合作伙伴关系。ARM架构表现已经越来越突出,但其痛苦而缓慢的64位改造进展预计将于2014年完成。 即便是与最为节省能耗的x86芯片相比,ARM处理器所使用的功率还要小得多,因此众多学者专家们一致认为ARM处理器是解决大规模网络服务基础设施问题的最终答案。但是,当谈及企业和高性能计算(HPC)处理琐事时,ARM并没有轻易地来承担。32位版本的系统无法处理足够的内存,所以ARM芯片及其指令集在服务器应用上缺乏与主流x86处理器一较长短的底气。
[单片机]
ARM 05年业务高速成长,处理器授权发展势头强劲
英国ARM公司日前发布了其截止至2005年12月31日的2005年第四季度及2005年全年未审计财务报告。报告显示ARM公司2005年第四季度及全年以美元结算总营业收入分别达到1.09亿美元和4.187亿美元,分别增长了8%和14%。第四季度及全年平均运营利润率分别达到35%和32.7%,公司业务继续保持增长和盈利。 2005年第四季度ARM公司以美元结算总营业收入为1.09亿美元,其中包括处理器部门的授权收入3030万美元,处理器部门的版税收入3620万美元,开发系统收入1350万美元,服务收入720万美元,物理IP部门收入2180万美元,其中物理IP授权收入1380万美元,物理IP版税收入800万美元。公司整体订单量在第四季
[焦点新闻]
详解Arm TCS23中的CPU集群
日前,Arm宣布推出2023 全面计算解决方案(TCS23),TCS23提供一整套针对特定工作负载而设计与优化的最新 IP,其中包括最新的CPU IP Cortex-X4、Cortex-A720和Cortex-A520,最新的GPU Immortalis-G720、 Mali-G720和Mali-G620,以及在安全领域的重要更新。 其中处理器IP是Arm IP生态系统中最重要的组成,因此Arm 终端事业部产品管理总监 Saurabh Pradhan、Arm 首席 CPU 架构师兼研究员 Ian Caulfield、Arm 首席 DSU 架构师兼研究员 Alex Waugh分别从Cortex-X4、Cortex-A系以及DSU
[半导体设计/制造]
详解<font color='red'>Arm</font> TCS23中的CPU集群
快速学Arm(29)--存储器寻址2
ARM芯片中的片内和片外存储器在芯片中的地址是由芯片厂家或用户分配的.给物理存储器分配逻辑地址的过程称为存储器映射.通过这些逻辑地址,就可以访问到相应存储器的物理存储单元.我们再来看一下下面的lpc2300的物理地址的分布: 从上面图中可以看出,AHB,APB两个内存区域都是分配给外设使用了.每个外设空间大小为16KB,最多可以分配128个外设,总共各2MB左右. 接下来,我们要理解一下存储器重映射的问题,所谓的存储器重映射是指部分存储器单元出现在与之前不同的逻辑地址上,也就是说同一物理地址在用户看来可能有多个不同的逻辑地址.逻辑地址是用户所看到的地址,而物理地址是在存储器中的实际地址.看下面的两个图例:
[单片机]
快速学<font color='red'>Arm</font>(29)--存储器寻址2
TDK推出基于3D HAL技术的位置传感器 可为关键汽车安全应用提供冗余
据外媒报道,日本TDK株式会社(TDK Corporation)宣布推出全新位置传感器HAR 3927,进一步扩展其Micronas直角霍尔效应(Hall-effect)传感器系列。该产品采用专有3D HAL®像素单元技术,并满足ISO 26262兼容开发的需求。根据SAE J2716修订版4要求,该全新传感器带有比例模拟输出和数字SENT接口。目前,TDK已提供该产品的样品,并计划于2022年第一季度投产。 (图片来源:TDK) 该HAR 3927传感器的工作范围为-40 °C到160 °C,适用于汽车应用,可为安全关键型汽车应用提供完全冗余的传感器解决方案,例如双离合变速器中的线性运动测量、发动机行程传感器、选档器和
[汽车电子]
TDK推出基于3D HAL技术的位置传感器 可为关键<font color='red'>汽车安全</font>应用提供冗余
投资ARM中国合资公司,3000亿丝路基金寻踪
   集微网小编:5月14日,ARM与厚安创新基金在北京签署了拟在深圳成立合资公司的合作备忘录。今年1月24日,由中投公司、丝路基金、新加坡淡马锡、深圳深业集团、厚朴投资与ARM公司共同发起设立的厚安创新基金在北京正式成立启动。丝路基金到底是何方神圣,今年21世纪经济报道相信介绍了来龙去脉。 21世纪经济报道   国家级丝路基金与地方丝路基金、社会资本组建的丝路基金间,应该是合作关系。国家级的基金主要考虑引导作用,引导社会资本参与,它同时还要选择优质的管理团队。   5月14日,国家主席习近平在“一带一路”国际合作高峰论坛上表示,未来中国将加大对“一带一路”建设资金支持,向丝路基金新增资金1000亿元人民币,鼓励金融机构开展人民币
[手机便携]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
热门活动
换一批
更多
设计资源 培训 开发板 精华推荐

最新单片机文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved