基于STM32处理器的数字PDA系统设计

发布者:心若澄明最新更新时间:2012-06-07 来源: 电子设计工程 关键字:STM32  μCOS-Ⅱ  数字PDA系统  页机制 手机看文章 扫描二维码
随时随地手机看文章
0 引言
    以Cortex-M3为内核的处理器由于其低功耗以及低成本并且是32位处理器,越来越多的研究人员已经从51处理器、AVR等处理器开始转移到这个领域。数字PDA系统设计采用的是以Cortex-M3的内核STM32ZET6控制器,但是由于STM32ZET6内部没有MMU,不能移植WincE,Linux等操作系统,故只能应用ucLinux,μC/OS-Ⅱ等实时操作系统。传统的操作系统ucLinux,μC/OS-Ⅱ在微控制器中移植后,应用程序就开始了与操作系统、以及硬件驱动之间的交互,一旦要添加新的应用程序或者对应用程序的更改,代码的修改量以及整个操作系统的稳定性都会收到影响。这时就需要一种新的机制,能够在保证系统稳定性的基础上快速设计应用程序,也正是基于这种思想,数字PDA系统将实时操作系统、硬件驱动、FATFS进行统一的封装,并给出一种基于页的机制,每一页就是一个线程,利用μC/OS-Ⅱ操作系统进行任务间的切换,而应用程序只需要按照页的设计规则,进行应用程序页设计即可,设计最终证明是合理可靠的。

1 数字PDA系统原理框图说明
    数字PDA系统的硬件电路部分由微控制器STM32F103ZET6、16 Mb NOR FLASH存储器、液晶显示LCD控制电路、USB接口电路、VS1003B MP3解码芯片电路、2 Gb misroSD卡接口电路、以及2.5~5 V电源电路组成。它的结构图如图1所示。

a.jpg



2 数字PDA系统硬件电路设计
2.1 微处理器MCU
    微处理器MCU采用STM32F103ZET6 ARM芯片,其特点是低功耗、价格低、具有丰富的外设资源如FSMC控制器、USB、多路SPI和USART,并且有MDK编程手册,易于上手。
2.2 NOR FLASH存储器
    NOR FLASH采用M29W128芯片,NOR FLASH的作用是存储页面资源、GUI资源、以及各种字库资源。数字PDA系统硬件电路使用微控制器的FSMC控制器对M29W128 NOR FLASH进行读写操作,主要是为了提高对M29W128读写速度。M29W128NOR FLASH中的存储的数据,也可以通过从microSD卡中读取并进行存储。
2.3 TFT液晶显示电路
    数字PDA系统硬件电路使用以HX8312为主控芯片的液晶控制电路和主控制器连接。主控制器和液晶控制电路之间的数据通信也使用主控制器的FSMC接口,目的是进行快速传输数据,避免液晶显示刷屏现象的产生。
2.4 VS1003音频解码电路
    VS1003是音频解码芯片,它支持Mpeg1和Mpeg2,WMA,MIDI,MP3解码,同时支持IMA ADPCM(单声道)、麦克风和线入等编码,VS1003具有一个高性能低功耗的DSP处理器核VS_DSP,0.5 KB数据RAM。数字PDA系统使用VS1003音频解码芯片,实现PDA的音乐MP3的播放功能。
2.5 USB接口电路和microSD卡接口电路
    STM32微控制器具有1个USB接口,该USB接口主要实现数字系统PDA在和PC机连接时的USB通信,当然也能为数字系统PDA系统供电。micro SD实现了数字PDA系统的大容量数据的存储。
2.6 PDA内部USB转串口电路
    PL2303遵循USB协议,并且支持到RS 232的转换。PDA数字系统通过PL2303电路实现主控制器的串口和PC之间的串口通信,这个电路主要用于系统调试。
2.7 电源电路
    电源电路包括锂电、5 V外接电源滤波电路、5 V转3.3 V、3.3 V转2.8 V、3.3 V转2.5 V五个电路,它们主要负责分别给主控制器、解码芯片、SD、NORFLASH提供电源。
[page]

3 数字PDA系统软件系统设计
3.1 软件系统总体介绍
    相比较硬件电路来说,硬件电路一旦确定并且电路正确,基本上没有大的变化,而软件部分则会出现非常大变化,因为应用的程序是多种多样的。但是STM32微控制器没有像PC处理器那样含有MMU,不能运行Linux和WinCE操作系统,但是在很多情况下,PDA数字系统是要实现多任务操作的,或者说多线程操作,所以在这种条件下,PDA数字系统采选用μC/OS-Ⅱ进行多任务之间根据优先级别的调度,而应用程序又是基于操作系统和硬件的,为了提高操作系统的稳定性和减少在数字PDA添加应用程序时代码的修改了,所以数字PDA系统将操作系统、GUI、硬件驱动程序、文件系统FATFS进行整合,采用一种页机制,每一页就是指一个TFT LCD显示的页,每一页就是一个线程,当页切换时,底层操作系统就实现任务的切换。
3.2 FATFS文件系统的移植
    由于PDA数字系统使用SD卡作为大容量数据的存储,虽然主控制器STM32含有SDIO接口,硬件驱动程序只要进行相应的配置就能实现SD的读写操作,但是这种操作时基于扇区的,而上层应用程序操作的是文件,所以必须移植文件系统。移植步骤就是将SD的读写扇区函数和文件系统的底层接口函数想关联。数字PDA系统使用FATFS文件系统,当然也可以使用FAT32文件系统,FATFS文件系统中diskio.c中提供五个接口函数,如图2所示。

b.jpg


    将microSD卡驱动函数的SD扇区读函数、扇区写函数、以及SD初始化的函数和图中的disk_read,disk_write,disk_initialize进行对接,当让还要在FATFS文件系统中数据类型integer.h中包含stm32f10x.h以及将integer.h中的数据类型进行更改,只需要更改文件系统中BOOL类型数据和stm32f10x.h中的bool类型一致即可,文件系统就移植完了。移植了FATFS文件系统后,数字PDA系统在读取SD卡时,就可以按照大家常用的文件格式进行读取数据。
3.3 μC/OS-Ⅱ实时操作系统的移植
    μC/OS-Ⅱ为PDA数字系统的操作系统提供多线程操作,任务的调度。由于系统需要多线程的调度,需要为数字PDA系统移植μC/OS-Ⅱ。数字PDA系统使用信号量和邮箱机制进行多任务的调度。μC/OS-Ⅱ是用标准C语言和汇编语言来写的,只有与微处理器相关的是由汇编指令写的,所以在STM32F103ZET6上中移植μC/OS-Ⅱ实时操作系统,只需要更改或者重写处理器相关文件OS_CPU.H和OS_CPU_C.C,汇编文件OS_CPU-A.ASM,系统配置文件OS_CFG.h。
3.4 硬件驱动程序
    数字PDA系统在调用微控制器的各种外设接口资源、以及各种硬件资源时需要调用这些硬件资源的驱动程序。数字PDA系统的硬件驱动程序由串口打印输出驱动程序、SD卡驱动程序、VS1003B硬件驱动程序、TFT LCD液晶显示器驱动程序、3个SPI串行通信口的驱动程序、NOR FLASH和STM32 FSMC接口驱动程序、触摸屏TSC2046驱动程序组成。以上的驱动程序保证了各个模块硬件资源的正常工作。作为最底层驱动程序,这些程序保证了整个数字PDA系统能够实现各种应用程序。
3.5 页与GUI图形界面接口
    数字PDA系统要在TFT LCD液晶显示器中的进行图形界面的显示,需要GUI的支持,数字PDA系统采GUI设计没有移植uCGui,而是根据液晶控制器重写的GUI,由于STM32F103ZET6微控制器的时钟为72 MHz,这样写的好处在于提高液晶页面显示的速度,减少刷屏现象的产生,提高PDA液晶画面显示的质量。
    数字PDA系统将以上的所有软件进行了整合,将液晶屏显示一个页作为一个线程,页面进行切换就实现了任务的切换,任务的切换由操作系统实现。通过页机制的框架,在应用程序进行修改或者添加新的应用程序时,减少了代码的修改量,保证系统的稳定性。
数字PDA系统启动后就进入主页线程,操作系统系统根据硬件中断和信号量邮箱机制,进行也切换,页切换的时候,会调用文件系统或者硬件驱动程序,这就是PDA系统的工作原理。

4 结语
    数字PDA设计是在硬件电路设计上移植文件系统、操作系统上完成的,整个系统不仅要求硬件电路的兼容正确,同时也要求FATFS文件系统和μC/OS-Ⅱ操作系统的移植正确,整个系统基于页的机制进行任务切换,经过实际证明页机制可以进行快速严谨的应用程序开发。

关键字:STM32  μCOS-Ⅱ  数字PDA系统  页机制 引用地址:基于STM32处理器的数字PDA系统设计

上一篇:基于ARM的智能无线信号变送器的设计
下一篇:OLED显示模块与AT91RM9200的接口设计

推荐阅读最新更新时间:2024-03-16 13:01

关于STM32串口空闲中断IDEL的问题
1.空闲中断是接受数据后出现一个byte的高电平(空闲)状态,就会触发空闲中断.并不是空闲就会一直中断,准确的说应该是上升沿(停止位)后一个byte,如果一直是低电平是不会触发空闲中断的(会触发break中断)。 2.关于第二点有要铺垫的三个情况,datasheet中 当一空闲帧被检测到时,其处理步骤和接收到普通数据帧一样,但如果IDLEIE位被设置将产生一个中断 空闲符号被视为完全由'1'组成的一个完整的数据帧,后面跟着包含了数据的下一帧的开始位'1'的位数也包括了停止位的位数” 空闲符号的配图后面跟这一个低电平. 有人理解为只有收到下一个数据的起始位才会触发中断,这样理解是不对的,应该是数据
[单片机]
STM32之SPI_CR1寄存器的SSM, SSI位理解
近日调试STM32的SPI程序,现在记录下自己的一点小理解。 STM32之SPI_CR1寄存器的SSM, SSI位理解 SSM位,启用或禁止软件从设备选择。SSM置位时,NSS输入引脚的电平将被SSI的值代替。 SSI位,在SSM=1时有意义,决定NSS引脚上的电平,NSS引脚上的IO值将忽略。 NSS输入分为硬件输入和软件控制输入两种模式。NSS有内部和外部引脚。当NSS是软件控制输入模式时,NSS的内部引脚和外部引脚断开。内部引脚通过SPI_CR1寄存器的SSI位来驱动,外部引脚留作他用(可以作为GPIO驱动从设备的片选信号)。 当SSM位置位使能时,启用软件从设备选择,也就是软件控制输入模式。外
[单片机]
STM32---对GPIO电路结构的理解(输出电路)
前一段时间学习了STM32,先是用库函数学了一个星期。发现学完之后,一些基本要用的东西能配出来,但是过程却是十分的懵逼。于是决定暂时放弃库函数,用51的思维学习32,从寄存器开始,发现效果不错。一两天学一两个模块,个把星期下来对一些基本模块的常用寄存器也理解的不少。决定慢慢的回归库函数之前写下自己对STM32一些模块的理解,共勉之。 首先附上GPIO口的内部电路图: 其中蓝色方框部分代表的是GPIO的输入电路,红色方框的部分,代表GPIO的输出电路。 可见: 从写入端看输出部分的四种模式分别是:通用推挽输出、通用开漏输出、复用推挽输出、复用开漏输出。 接下来分析输出电路的四种输出形式(数据从“1”或“2”端到 I/O 端口。注
[单片机]
基于STM32的八种GPIO输入输出模式解析
最近在看数据手册的时候,发现STM32的GPIO输入输出模式的配置种类有8种之多(输入和输入各4种): (1)GPIO_Mode_AIN模拟输入 (2)GPIO_Mode_IN_FLOATING浮空输入 (3)GPIO_Mode_IPD下拉输入 (4)GPIO_Mode_IPU上拉输入 (5)GPIO_Mode_Out_OD开漏输出 (6)GPIO_Mode_Out_PP推挽输出 (7)GPIO_Mode_AF_OD复用开漏输出 (8)GPIO_Mode_AF_PP复用推挽输出 我们平时接触的最多的也就是推挽输出、开漏输出、上拉输入这三种,但对于各种模式下IO口的内部电路和典型应用,STM32的数据手册中也未曾做过详细的说明和归纳
[单片机]
基于<font color='red'>STM32</font>的八种GPIO输入输出模式解析
STM32的USB设计-单片机程序篇
  首先,我们来看看usb的工作过程。   当usb设备接入到主机时,主机开始枚举usb设备,并向usb设备发出指令要求获取usb设备的相关描述信息,其中包括设备描述(device descriptor)、配置描述(configuration descriptor)、接口描述(interface descriptor)、端点描述(endpoint descriptor)等。这些信息是通过端点0(endpoint 0)传送到主机的。获取各种描述信息后,操作系统会为其配置相应的资源。这样主机就可以与设备之间进行通信了。   usb通讯有四种通讯方式控制(control)、中断(interrupt)、批量(bulk)和同步( sy
[单片机]
STM32超声波测距
超声波测距模块是HC-SR04,C-SR04超声波测距模块可提供2cm-400cm的非接触式距离感测功能,测 距精度可达高到3mm;模块包括超声波发射器、接收器与控制电路。 HC-SR04基本工作原理: (1)采用IO口TRIG触发测距,给最少10us的高电平信呈。 (2)模块自动发送8个40khz的方波,自动检测是否有信号返回; (3)有信号返回, 通过IO口ECHO输出一个高电平, 高电平持续的时间就是超声波从发射到返回的时间。 测试距离=(高电平时间*声速(340M/S))/2。 程序编写思路是:1、配置好使用到的GPIO以及定时器; 2、给模块TRIG端口发送大于10us的高电平信号,当收、收到ECHO回响信号是,打开定时
[单片机]
<font color='red'>STM32</font>超声波测距
STM32固件库说明
l 版本 :v2.0.3 l 发布时间 :09/22/2008 l 功能: :给出了STM32微控制器片内所有外设的驱动函数,使用户把更多的时间花在应用程序的开发上,以加快产品上市时间。(实质上是将各种寄存器的参数配置定义成宏,并以结构体的方式给寄存器赋值,这样既方便又易懂) l 特点 : 由函数、数据结构和宏组成,包括了微控制器所有外设的功能特征,还包括了每个外设的驱动描述和应用实例 按照ANSI-C编写的,不受开发环境的影响,仅启动文件取决于开发环境(即程序和数据在寄存器中是如何配置的得根据所使用的开发环境),非常易于移植。 每个外设驱动都由一组函数组成,这组函数覆盖了该外设所有功能。函数和参数名称都进行了标准化(函
[单片机]
<font color='red'>STM32</font>固件库说明
如何使用STM32实现systick的精确延时
SYSTICK寄存器初始化 void SysTick_Configuration(void) { if (SysTick_Config(SystemCoreClock / 100)) { while (1); } NVIC_SetPriority(SysTick_IRQn, 0x0); } SysTick_Config默认时钟为SysTick_CLKSource_HCLK,所以在这之前使用SysTick_CLKSourceConfig()选择系统时钟不会改变systick的时钟 static __INLINE uint32_t SysTick_Config(uint32_t ticks) { if (ticks 》 Sys
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved