新手常用单片机延时程序

发布者:Serendipitous33最新更新时间:2013-01-30 来源: 21ic关键字:单片机  延时程序 手机看文章 扫描二维码
随时随地手机看文章

单片机延时程序(适合初学者)

下面几个是单片机的延时程序(包括asm和C程序,都是我在学单片机的过程中用到的),在单片机延时程序中应考虑所使用的晶振的频率,在51系列的单片机中我们常用的是11.0592MHz和12.0000MHz的晶振,而在AVR单片机上常用的有8.000MHz和4.000MH的晶振所以在网上查找程序时如果涉及到精确延时则应该注意晶振的频率是多大。

软件延时:(asm)

晶振12MHZ,延时1秒

程序如下:

DELAY:MOV 72H,#100

LOOP3:MOV 71H,#100

LOOP1:MOV 70H,#47

LOOP0JNZ 70H,LOOP0

NOP

DJNZ 71H,LOOP1

MOV 70H,#46

LOOP2JNZ 70H,LOOP2

NOP

DJNZ 72H,LOOP3

MOV 70H,#48

LOOP4JNZ 70H,LOOP4

定时器延时:

晶振12MHZ,延时1s,定时器0工作方式为方式1

DELAY1:MOV R7,#0AH ;; 晶振12MHZ,延时0.5秒

AJMP DELAY

DELAY2:MOV R7,#14H ;; 晶振12MHZ,延时1秒

DELAY:CLR EX0

MOV TMOD,#01H ;设置定时器的工作方式为方式1

MOV TL0,#0B0H ;给定时器设置计数初始值

MOV TH0,#3CH

SETB TR0 ;开启定时器

HERE:JBC TF0,NEXT1

SJMP HERE

NEXT1:MOV TL0,#0B0H

MOV TH0,#3CH

DJNZ R7,HERE

CLR TR0 ;定时器要软件清零

SETB EX0

RET

C语言延时程序:

void delay_18B20(unsigned int i)

{

while(i--);

}

void Delay10us( ) //12mhz

{

_NOP_( );

_NOP_( );

_NOP_( );

_NOP_( );

_NOP_( );

_NOP_( );

}

/*****************11us延时函数*************************/

//

void delay(uint t)

{

for (;t>0;t--);

}

1ms延时子程序(12MHZ)

void delay1ms(uint p)//12mhz

{ uchar i,j;

for(i=0;i

{

for(j=0;j<124;j++)

{;}

}

}

函数功能:延时20ms的子程序[page]

**************************************************************/

void delay20ms(void) //3*i*j+2*i=3*100*60+2*100=20000μs=20ms;

{ //(3*60+2)*100

unsigned char i,j;

for(i=0;i<100;i++)

for(j=0;j<60;j++)

;

}

10ms延时子程序(12MHZ)

void delay10ms(void)

{

unsigned char i,j,k;

for(i=5;i>0;i--)

for(j=4;j>0;j--)

for(k=248;k>0;k--);

}

((248*2+3)*4+3)*5+5=10ms

1s延时子程序(12MHZ)

void delay1s(void)

{

unsigned char h,i,j,k;

for(h=5;h>0;h--)

for(i=4;i>0;i--)

for(j=116;j>0;j--)

for(k=214;k>0;k--);

}

200ms延时子程序(12MHZ)

void delay200ms(void)

{

unsigned char i,j,k;

for(i=5;i>0;i--)

for(j=132;j>0;j--)

for(k=150;k>0;k--);

}

500ms延时子程序程序: (12MHZ)

void delay500ms(void)

{

unsigned char i,j,k;

for(i=15;i>0;i--)

for(j=202;j>0;j--)

for(k=81;k>0;k--);

}

下面是用了8.0000MHZ的晶振的几个延时程序(用定时0的工作模式1):

(1)延时0.9MS

void delay_0_9ms(void)

{

TMOD=0x01; /*定时器0工作在模式1下(16位计数器)*/

TH0=0xfd;

TL0=0xa8;

TR0=1; /*启动定时器*/

while(TF0==0);

TR0=0;

}

(2)延时1MS

void delay_1ms(void)

{

TMOD=0x01; /*定时器0工作在模式1下(16位计数器)*/

TH0=0xfd;

TL0=0x65;

TR0=1; /*启动定时器*/

while(TF0==0);

TR0=0;

}

(3)延时4.5ms

void delay_4_5ms(void)

{

TMOD=0x01; /*定时器0工作在模式1下(16位计数器)*/

TH0=0xf4;

TL0=0x48;

TR0=1; /*启动定时器*/

while(TF0==0);

TR0=0;

}

在用定时器做延时程序时如果懒得计算定时器计数的初始值可以在网上找一个专门用来做延时的小软件,我在用着感觉很实用,如果找不到的话可以留言,留下自己的邮箱我给发过去;如果上面的延时中有错误敬请指正。

Keil C51程序设计中几种精确延时方法

2009年07月28日 星期二 下午 11:15

延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。

1 使用定时器/计数器实现精确延时

单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。

在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。

2 软件延时与时间计算

在很多情况下,定时器/计数器经常被用作其他用途,这时候就只能用软件方法延时。下面介绍几种软件延时的方法。[page]

2.1 短暂延时

可以在C文件中通过使用带_NOP_( )语句的函数实现,定义一系列不同的延时函数,如Delay10us( )、Delay25us( )、Delay40us( )等存放在一个自定义的C文件中,需要时在主程序中直接调用。如延时10 μs的延时函数可编写如下:

void Delay10us( ) {

_NOP_( );

_NOP_( );

_NOP_( );

_NOP_( );

_NOP_( );

_NOP_( );

}

Delay10us( )函数中共用了6个_NOP_( )语句,每个语句执行时间为1 μs。主函数调用Delay10us( )时,先执行一个LCALL指令(2 μs),然后执行6个_NOP_( )语句(6 μs),最后执行了一个RET指令(2 μs),所以执行上述函数时共需要10 μs。 可以把这一函数当作基本延时函数,在其他函数中调用,即嵌套调用[4],以实现较长时间的延时;但需要注意,如在Delay40us( )中直接调用4次Delay10us( )函数,得到的延时时间将是42 μs,而不是40 μs。这是因为执行Delay40us( )时,先执行了一次LCALL指令(2 μs),然后开始执行第一个Delay10us( ),执行完最后一个Delay10us( )时,直接返回到主程序。依此类推,如果是两层嵌套调用,如在Delay80us( )中两次调用Delay40us( ),则也要先执行一次LCALL指令(2 μs),然后执行两次Delay40us( )函数(84 μs),所以,实际延时时间为86 μs。简言之,只有最内层的函数执行RET指令。该指令直接返回到上级函数或主函数。如在Delay80μs( )中直接调用8次Delay10us( ),此时的延时时间为82 μs。通过修改基本延时函数和适当的组合调用,上述方法可以实现不同时间的延时。

2.2 在C51中嵌套汇编程序段实现延时

在C51中通过预处理指令#pragma asm和#pragma endasm可以嵌套汇编语言语句。用户编写的汇编语言紧跟在#pragma asm之后,在#pragma endasm之前结束。

如:#pragma asm

汇编语言程序段

#pragma endasm

延时函数可设置入口参数,可将参数定义为unsigned char、int或long型。根据参数与返回值的传递规则,这时参数和函数返回值位于R7、R7R6、R7R6R5中。在应用时应注意以下几点:

◆ #pragma asm、#pragma endasm不允许嵌套使用;

◆ 在程序的开头应加上预处理指令#pragma asm,在该指令之前只能有注释或其他预处理指令;

◆ 当使用asm语句时,编译系统并不输出目标模块,而只输出汇编源文件;

◆ asm只能用小写字母,如果把asm写成大写,编译系统就把它作为普通变量;

◆ #pragma asm、#pragma endasm和 asm只能在函数内使用。

将汇编语言与C51结合起来,充分发挥各自的优势,无疑是单片机开发人员的最佳选择。

2.3 使用示波器确定延时时间

利用示波器来测定延时程序执行时间。方法如下:编写一个实现延时的函数,在该函数的开始置某个I/O口线如P1.0为高电平,在函数的最后清P1.0为低电平。在主程序中循环调用该延时函数,通过示波器测量P1.0引脚上的高电平时间即可确定延时函数的执行时间。方法如下:

sbit T_point = P1^0;

void Dly1ms(void) {

unsigned int i,j;

while (1) {

T_point = 1;

for(i=0;i<2;i++){

for(j=0;j<124;j++){;}

}

T_point = 0;

for(i=0;i<1;i++){

for(j=0;j<124;j++){;}

}

}

}

void main (void) {

Dly1ms();

}

把P1.0接入示波器,运行上面的程序,可以看到P1.0输出的波形为周期是3 ms的方波。其中,高电平为2 ms,低电平为1 ms,即for循环结构“for(j=0;j<124;j++) {;}”的执行时间为1 ms。通过改变循环次数,可得到不同时间的延时。当然,也可以不用for循环而用别的语句实现延时。这里讨论的只是确定延时的方法。

2.4 使用反汇编工具计算延时时间

用Keil C51中的反汇编工具计算延时时间,在反汇编窗口中可用源程序和汇编程序的混合代码或汇编代码显示目标应用程序。为了说明这种方法,还使用“for (i=0;i

C:0x000FE4CLRA//1T

C:0x0010FEMOVR6,A//1T

C:0x0011EEMOVA,R6//1T

C:0x0012C3CLRC//1T

C:0x00139FSUBBA,DlyT //1T

C:0x00145003JNCC:0019//2T

C:0x00160E INCR6//1T

C:0x001780F8SJMPC:0011//2T

可以看出,0x000F~0x0017一共8条语句,分析语句可以发现并不是每条语句都执行DlyT次。核心循环只有0x0011~0x0017共6条语句,总共8个机器周期,第1次循环先执行“CLR A”和“MOV R6,A”两条语句,需要2个机器周期,每循环1次需要8个机器周期,但最后1次循环需要5个机器周期。DlyT次核心循环语句消耗(2+DlyT×8+5)个机器周期,当系统采用12 MHz时,精度为7 μs。

当采用while (DlyT--)循环体时,DlyT的值存放在R7中。相对应的汇编代码如下:

C:0x000FAE07MOVR6, R7//1T

C:0x00111F DECR7//1T

C:0x0012EE MOVA,R6//1T

C:0x001370FAJNZC:000F//2T

循环语句执行的时间为(DlyT+1)×5个机器周期,即这种循环结构的延时精度为5 μs。

通过实验发现,如将while (DlyT--)改为while (--DlyT),经过反汇编后得到如下代码:

C:0x0014DFFE DJNZR7,C:0014//2T

可以看出,这时代码只有1句,共占用2个机器周期,精度达到2 μs,循环体耗时DlyT×2个机器周期;但这时应该注意,DlyT初始值不能为0。

注意:计算时间时还应加上函数调用和函数返回各2个机器周期时间。

关键字:单片机  延时程序 引用地址:新手常用单片机延时程序

上一篇:单片机存储器的配置
下一篇:单片机有哪些延时方法详细介绍

推荐阅读最新更新时间:2024-03-16 13:17

单片机音乐-输出口P0.4 STC89C52RC测试通过
/** * 编写时间: 2013.05.16 * 作 者: 小苏 * 函数功能: 单片机音乐-世上只有妈妈好 * 使用说明: 输出口P0.4 STC89C52RC测试通过 ******************************************************************************/ #include reg52.h #define uchar unsigned char sbit beep=P0^4; //定义蜂鸣器输出端口 uchar timer0h,timer0l,time; //世上只有妈妈好 数据表 code
[单片机]
PIC16F877单片机的液晶显示模块接口技术
  引言   由于液晶显示器(LCD)具有功耗低、体积小、质量轻、超薄等其他显示器无法比拟的优点,它广泛用于各种智能型仪器和低功耗电子产品中。点阵式(或图形式) LCD不仅可以显示字符、数字,还可以显示各种图形、曲线及汉字,并且可以实现屏幕上下左右滚动、动画、闪烁、文本特征显示等功能,用途十分广泛。本文在简介液晶显示器MG-12232的驱动器SED1520F0A的结构、功能的基础上,介绍了PIC16F877单片机的LCD硬件接口电路和软件编程特点。   一、PIC16F877与MG-12232的硬件接口电路   1.SED1520F0A的接口信号   SED1520F0A属行列驱动及控制合一的小规模液晶显示驱动芯片,电路简单
[单片机]
PIC16F877<font color='red'>单片机</font>的液晶显示模块接口技术
基于单片机PIC18F4550的USB接口设计
引言   USB是一种快速的、双向同步传输的、廉价并可以进行热插拔的串行接口。利用USB总线技术,开发适用于科学研究和工业牛产的各种仪器仪表设备,借以取代传统计算机测控系统中采用串行RS232或并行接口的仪器仪表设备,使计算机测控系统更加高效实时,方便灵活。   利用USB总线的数据采集方案有两种,一种是采用普通单片机加上专用的USB通信芯片。该方案可充分利用开发人员原有的硬件资源和软件知识,开发成本较低,但系统的设计和调试较为麻烦,且电磁兼容性差,容易造成主机不能识别USB设备。另一种是利用具有USB接口功能的单片机。使用这些专用芯片构成的数据采集系统电路设计简单,调试方便,电磁兼容性好。然而,目前大部分具有USB功能的单片机都
[单片机]
基于<font color='red'>单片机</font>PIC18F4550的USB接口设计
基于CPLD的单片机PCI接口设计
    摘要: 详细阐述一种利用CPLD实现的8位单片机与PCI设备间的通信接口方案,给出用ABEL HDL编写的主要源程序。该方案在实践中检验通过。     关键词: 单片机 CPLD PCI 8位单片机在嵌入式系统中应用广泛,然而让它直接与PCI总线设备打交道却有其固有缺陷。8位单片机只有16位地址线,8位数据端口,而PCI总线2.0规范中,除了有32位地址数据复用AD 外,还有FRAME、IRDY、TRDY等重要的信号线。让单片机有限的I/O端口来直接控制如此众多的信号线是不可能的。一种可行的方案就是利用CPLD作为沟通单片机与PCI设备间的桥梁,充分利用CPLD中I/O资源丰富,用户可自定制
[应用]
基于Atmega64L的心率监测系统中MCU的设计
1 引言 根据运动心率可准确划分运动强度等级,通过单片机对监测心率按照划分等级的智能判断,可以实时监测训练强度,进行显示报警,从而掌握科学的训练强度。通过对便携式心率监测系统的特点研究分析,针对如何提高系统实时性、可靠性和抗干扰能力的问题,我们要求对该系统微控制处理模块(MCU)进行了基于Atmega64L的设计。 2 单片机Atmega64L Atmega64L是基于增强的AVR RISC结构的低功耗8位CMOS微控制器。由于其先进指令集以及单时钟周期指令执行时间,数据吞吐率高达1MIPS/MHz,有6种睡眠模式,功耗较低,适合于便携式产品应用。 3 Atmega64L外围电路设计 Atmega64L的外围电
[单片机]
基于Atmega64L的心率监测系统中<font color='red'>MCU</font>的设计
数字温度传感器与单片机构成测温系统的探讨
1LM92数字温度传感器    LM92是美国国家半导体公司近期生产的一种高精度数字温度传感器,他采用I 2 C总线方式 控制。内含12 b温度A/D转换器,工作电压:+2.7~+5.5 V;测温范围:-55~+150 ℃;精度: 0.333 ℃(30 ℃时);线形度: 0.5 ℃;温度刷新间隔:500 ms。内部有 16 b只读温度寄存器,通过I 2 C总线方式控制,可以存储测温数据,还可以设置窗口上、下限温度值,临界温度告警值。当测温数据偏离窗口上、下限温度范围,或临界温度值时,LM92可以产生中断请求信号INT或临界温度告警信号TCRITA。在同一条I 2 C总线上最多可连接4个LM92。LM92采用SO8脚封装,I
[单片机]
数字温度传感器与<font color='red'>单片机</font>构成测温系统的探讨
AVR单片机密码锁程序
这是一款用AVR单片机实现的密码锁,它分别由硬件16个矩阵键盘、数码管以及蜂鸣器组成的。系统正确的初始密码为0、1、2、3。当我们按下按键次数在4次以内,系统才判断密码对与否,当输入密码正确时,蜂鸣器报响起,即表示密码是正确的,当我们按下按键的次数超过4次,即使按下的密码正确,蜂鸣器也不响,还有按下密码顺序必须是0、1、2、3,如果按下0、2、1、3或者是其它的,都不能正常开蜂鸣器。如果按键次数超过4次了,密码就无法正常输入了,此时只要按下第16个按键时,就可以回到初始状态,即清除我们以前按键按下的次数,(因为密码输入时必须在4次以内完成的,超过了4次你怎么输,也进入密码判断模式)此时就可以重新输入正确的密码了。另外当按下按键时,
[单片机]
IAR全面支持中微半导体车规级BAT32A系列MCU
2023年4月,中国上海——全球领先的嵌入式开发软件方案和服务供应商 IAR 与知名芯片设计公司 中微半导体 (深圳)股份有限公司(股票代码688380,以下简称“中微半导”)共同宣布, IAR 最新发布的 IAR Embedded Workbench for Arm 9.32版本已全面支持中微半导 车规级 BAT32A系列 MCU ,将共同助力国产汽车芯片创新研发。 中微半导基于其在 MCU 领域22年技术储备和平台化的资源优势,形成了丰富且完善的汽车芯片产品阵列,可提供多系列高性能、高可靠性及高安全性标准控制芯片。其中 车规级 BAT32A系列 MCU 基于Arm Cortex-M0+/M4内核,具有强大运算性能和大容量存
[汽车电子]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved