基于三轴加速度传感器的老人摔倒检测

发布者:Serendipity66最新更新时间:2013-05-06 来源: 电子技术 关键字:加速度传感器  三轴加速度传感器  摔倒检测 手机看文章 扫描二维码
随时随地手机看文章
1 加速度传感器
1.1 定 义
   
加速度传感器是一种能够测量加速力的电子设备。加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力,也就是重力。加速度计有两种:一种是角加速度计,是由陀螺仪(角速度传感器)的改进的。另一种就是线加速度计。
1.2 加速传感器的工作原理
   
加速度传感器会接受外界传递的物理性输入,通过感测器转换为电子信号,再最终转换为可用的信息。主要感应方式是对微小物理量的变化进行测量,再通过电压信号来表示这些变化量。

2 三轴加速度传感器ADXL345
2.1 概述
   
ADXL345是ADI公司推出的基于MEMS技术的数字输出的三轴加速度传感器。ADXL345具有±2g,±4g,±8g,±16g可变的测量范围;最高13 b分辨率测量;固定的4 mg/LSB灵敏度;3 mm×5 mm×1 mm超小封装;40~145 μA超低功耗;标准的I2C或SPI数字接口;32级FIFO存储;以及内部多种运动状态检测和灵活的中断方式等特性。这些特性使其成为一款非常适合用于摔倒检测的加速度传感器。
2.2 工作原理
   
ADXL345首先由前端感应器件感应测得加速度的大小,然后由感应电信号器件转为可识别的电信号,这个信号是模拟信号。ADXL345集成的A/D装换器将此模拟信号转换为数字信号。在计算机中,数字信号一律用补码的形式表示,在此也一样,A/D转换器输出的是16位的二进制补码。经过数字滤波器的滤波后,在控制和中断逻辑单元的控制下访问32级FIFO,通过串行接口读取数据。ADXL345的控制命令也是通过接收来自串口的读写命令来实现的,这主要是对寄存器的操作。

3 ADXL345与微控制器的通信
   
ADXL345为用户提供了两种与微控制器的通信方式:SPI和I2C。本文采用基于嵌入式的S3C2410微控制器与三轴加速度传感器ADXL345的连接来详细讲述ADXL345的SPI通信方式。

a.JPG


3.1 ADXL345的SPI通信过程
    SPI的最高时钟为5 MHz,通信开始时主MCU选择CS置位,CS复位则通信结束,SCLK由主MCU提供串行时钟。SDI与SDO是串行数据输入与输出,它们分别在时钟的上升沿获取数据。一次通信过程中读写多字节必须要设定MB位(Multiple—byte Bit),在读取完第一个寄存器的数据后ADXL345会自动将地址指向下一个寄存器。ADXL345输出16位二进制补码,每个轴都分配了2 B输出数据寄存器,共6个,地址为0X32-0X27,这样会连续输出6 B数据。但对地址非连续的寄存器进行操作必须通过CS停止通信并单独设定下一个要操作的寄存器地址,然后再建立通信。所以通过SPI读取ADXL345采集的数据只能连续读取6 B数据,然后地址返回0X32继续读取6 B数据。
3.2 S3C2410的接口特点
   
S3C2410有2个串行外围设备接口(SPI),每个SPI接口都有2个分别用于发送和接收的8位移位寄存器。在SPI通信中,数据同时被发送(串行移出)和接收(串行移入),8位串行数据的传输速率由相关的控制寄存器决定。
    SPI的接口特性:与SPI接口协议V2.11兼容;8位用于发送的移位寄存器;8位用于接收的移位寄存器;8位预分频逻辑;查询、中断和DMA传送模式。
3.3 接口连接
   
根据ADXL345工作原理和S3C2410的接口特点,把S3C2410的SPI配置为主设备,完成对ADXL345的接口设计,硬件连接如图2所示。

b.JPG


    SPI MOSI作为主设备的输出,SPI MISO作为主设备的输入,SPI CLK用作SPI通信的串行时钟。且S3C2410支持4种不同的传输格式,可以保证主从设备时序的一致性。
    S3C2410的SPI接口操作:通过SPI接口S3C2410可以与ADXL345同时发送和接收8位数据。串行时钟线与两条数据线同步,用于移位和数据采样。
[page]

4 老人摔倒检测
4.1 检测原理
   
将三轴加速度传感器的三个坐标分别与人体坐标相对应,x轴代表人体左右方向加速度变化,y轴代表人体前后方向的加速度变化,z轴代表人体垂直方向的加速度变化。当人在站立或行走状态时,z轴的加速度接近g,x轴和y轴加速度接近0。当人体的摔倒过程中,三个轴的加速度及其矢量和会发生变化,通过设定一定的阈值,判断三个轴向的加速度变化,判断老人是否摔倒。
4.2 ADXL345中断
    Free_fall:当加速度值低于一定阈值并且持续超过一定的时间时,Free_fall中断置位。
    Activity:当加速度值超过一定阈值时,Activity中断置位。
    Inactivity:当加速度值低于一定阈值且持续超过一定时间时,Inactivity中断置位。
4.3 检测判断方案
   
失重检测:人体摔倒的过程中存在失重现象,虽然没有自由落体时失重现象明显,但加速度矢量和也会小于1g,利用Free_fall中断判断人体摔倒过程中的失重过程,将此作为摔倒状态的第一个判断依据。
    撞击检测:人体在摔倒时与地面发生撞击,加速度矢量和会产生一个峰值。利用ADXL345的Activity中断来检测。在此需要设置一个时间的阈值,在失重检测与撞击检测之间,设置时间间隔为200 ms,如果在Free_fall中断后200 ms仍会发生Activity中断,认为人体没有摔倒,也可能是因为弯腰动作造成加速度变化。
    静止检测:人体摔倒不会马上站起来,会有一点时间的静止状态。由于人体由垂直变为水平,此时加速度的矢量和会小于某个值。利用ADXL345的Inactivity中断来检测。设置Activity中断与Inactivity中断的时间间隔为2 s,在撞击后的3.5 s内应该有静止状态,如果时
间超时还未产生Inactivity中断,认为没有摔倒。
    与初始状态比较检测:人体在摔倒之后与站立时的三个轴向的加速度是不同的。为了进一步检测人体是否摔倒,可以取人体摔倒之前的三个轴向的加速度与摔倒后的加速度进行比较,如果各个轴向的加速度之差超过一定的阈值,判断为一次摔倒。
    可以根据人体摔倒过程中加速的变化曲线来设定各个阈值。摔倒过程中的加速度变化曲线如图3所示。

c.JPG


4.4 检测方案流程图
   
摔倒检测方案流程图如图4所示。

d.JPG



5 结语
   
本文主要以三轴加速度传感器ADXL345为例,介绍了其工作原理,与微控制器的通信方式及接口连接。通过分析得知三轴加速度传感器ADXL345非常适用于检测人体意外摔倒。最后利用ADXL345的内部中断,提出一种检测老人意外摔倒的方案。利用三轴加速度传感器解决老人意外摔倒检测问题有其重要的科研价值和应用意义。

关键字:加速度传感器  三轴加速度传感器  摔倒检测 引用地址:基于三轴加速度传感器的老人摔倒检测

上一篇:ST推业界领先新款微控制器 扩展STM32F4系列阵容
下一篇:基于ARM9的多功能综合通信控制系统设计

推荐阅读最新更新时间:2024-03-16 13:23

基于双加速度传感器的新型角度测量系统设计
引言 在现代控制系统中,角度测量装置是非常关键的需要高精度的部件,其测量精度直接影响着整个系统的性能和精度。例如施工升降机上有角度测控机构来控制起降;火箭炮瞄准系统中都有大量的角度传感器,实时检测炮塔偏转角度,以便对火箭炮瞄准进行调整。目前已有的利用的加速度传感器实现高精度角度测量的研究,主要侧重于单轴的角度测量。本文将重点讨论利用双轴加速传感器ADXL202实现高精度角度测量的软硬件方法。 1 角度测量仪系统硬件方案设计 本角度测量仪采用STM32F107作为数据处理的核心芯片。这是一款低功耗、高速度的32位处理器,拥有Cortex—M3内核。角度测量模块使用的是高精度、低功耗的双轴加速度传感器ADXL202,能将加速度信号
[单片机]
基于双<font color='red'>轴</font><font color='red'>加速度传感器</font>的新型角度测量系统设计
TMS320VC5402在加速度式波浪传感器中的应用
   1 引言   海浪观测是海洋调查的一项重要内容,采用装有加速度式波浪传感器的波浪浮标是一种有效的海浪测量方式。当装有波浪传感器的浮标随波面起伏运动时,浮标内传感器输出反映波面升沉加速度变化的信号,对其进行二次积分处理,即可得到与波面起伏高度变化成比例的信号,再对此信号进行处理,得到波高及波周期数据。加速度信号积分采用模拟积分电路,也可采用数值积分方式。通常波浪周期为2~30 s,模拟积分电路采用积分电容值则较大,这使得传感器体积比较大,而且模拟线路易受外界温度、湿度等因素影响,不便于调试,而采用数值积分方式则能有效克服这些问题。   数值积分要进行大量乘加运算,DSP是一种适用于数字信号处理运算的微处理器,可用于实现各种
[嵌入式]
智能加速度传感器工作原理及其设计原则
智能加速度传感器可以有效地克服对于传统加速度传感器的输出特性容易受噪声、温度、电源纹波、湿度等多种因素的干扰,扩大了加速度传感器的应用范围,实现了加速度的精确测量。对于智能加速度传感器的设计,我们要综合考虑。 智能加速度传感器的工作原理是 :敏感元件将测点的加速度信号转换为相应的电信号,进入前置放大电路,经过信号调理电路改善信号的信噪比,再进行模数转换得到数字信号,最后送入计算机,计算机再进行数据存储和显示。智能加速度传感器主要由敏感元件、信号调理电路、A/D转换器、典型的单片机系统、键盘和电源等组成。 在硬件选用方面,智能加速度传感器设计要遵循以下原则:尽量采用集成化程度高的芯片,以减小主机体积,满足便携使用要求;采用低
[嵌入式]
基于STM32F的曼彻斯特电压/电流编译码系统设计
引言 由于曼彻斯特(MancheSTer)编码具有传输时无直流分量,时钟提取方便等特点,被广泛地应用于以太网、车辆总线、工业总线中。现在工程上常用的曼彻斯特编译码芯片为HD-6408和HD-6409,但是这种芯片有一些不足。首先,该芯片在传输速率和每帧数据中的有效位数等方面都做了严格的限制。其次,使用该芯片需要增加额外的硬件电路,提高了系统成本。使用FPGA做曼彻斯特编译码成本高,而且开发周期长。本文提出了一种基于STM32F103RET6的编译码系统方案,利用了STM32F103RET6强大的定时器功能,采用灵活的编译码方式,传输速率和数据帧格式都可以根据需要完全自行定义。STM32F103RET6自带DMA的功能使得数据编码不
[单片机]
基于STM32F的曼彻斯特电压/电流编译码系统设计
数字式MEMS加速度传感器在车载导航中的应用
随着定位导航技术的飞速发展,车载导航系统在相关领域得到了越来越广泛的应用。车载导航系统的功能是帮助用户确定车辆位置并提供正确的操作指示,因此定位的精确程度成为衡量一套系统性能优劣的重要指标。目前,随着城市道路的发展,高架路日益成为城市交通的枢纽,因此如何对车辆是否位于高架上的定位成为了车载导航系统急需解决的问题。常用的 GPS  卫星定位虽然可以测量高度,但是误差却在100m左右,无法达到高架一般几米的要求,所以直接测量的方法是很难满足的。 这里使用国外成熟的 加速度计 器件ADXL 202JE,通过测量车辆上下高架时的倾斜角变化,结合GPS定位来判断车辆是否位于高架上。 系统设计 测量原理 ADXL 202JE采用
[嵌入式]
汽车应用中的磁阻传感器
磁阻效应支持汽车内的多种传感器应用。磁阻传感器主要用来测量机械系统的速度和角度。这样,磁阻传感器就成为电气元件、磁性元件和机械元件所组成的复杂系统的一部分。因为所有元件都会影响系统的反应,所以在规划系统及其操作时要非常重视对整个系统的仿真。下面重点讨论这种系统的建模和仿真。 电子技术的应用日益广泛,对汽车的发展具有决定性的促进作用。未来的进一步发展也会在很大程度上由不断创新的电子元件驱动。传感器技术可检测车辆及其周围环境条件,因此具有特殊意义。有多种传感器系统可用于此类目的,例如加速度传感器、温度传感器或转矩传感器等。磁场测量传感器在汽车内尤其常见,主要用于机械变量的非接触式检测。通常这种传感器通过霍尔元件,或者基于各向异性磁阻
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved