基于USB2.0总线的高速数据采集系统设计

发布者:RadiantGaze最新更新时间:2013-11-08 来源: 21ic关键字:USB2.0总线  数据采集系统  CY7C68013 手机看文章 扫描二维码
随时随地手机看文章
1    引言

现代工业生产和科学研究对数据采集的要求日益提高,在瞬态信号测量、图像处理等一些高速、高精度的测量中,需要进行高速数据采集。现在通用的高速数据采集卡一般多是PCI卡或ISA卡,存在以下缺点:安装麻烦、价格昂贵;受计算机插槽数量、地址、中断资源限制,可扩展性差;在一些电磁干扰性强的测试现场,无法专门对其做电磁屏蔽,导致采集的数据失真。

通用串行总线USB是1995年康柏、微软、IBM、DEC等公司为解决传统总线不足而推广的一种新型的通信标准。该总线接口具有安装方便、高带宽、易于扩展等优点,已逐渐成为现代数据传输的发展趋势。基于USB的高速数据采集卡充分利用USB总线的上述优点,有效解决了传统高速数据采集卡的缺陷。

2    硬件设计

2.1支持USB2.0高速传输的CY7C68013

Cypress Semiconductor公司的EZ-USB FX2是世界上第一款集成USB2.0的微处理器,它集成了USB2.0收发器、SIE(串行接口引擎)、增强的8051微控制器和可编程的外围接口。FX2这种独创性结构可使数据传输率达到56Mbytes/s,即USB2.0允许的最大带宽。在FX2中,智能SIE可以硬件处理许多USB1.1和USB2.0协议,从而减少了开发时间和确保了USB的兼容性。GPIF(General Programmable Interface)和主/从端点FIFO(8位或16位数据总线)为ATA、UTOPIA、EPP、PCMCIA和DSP等提供了简单和无缝连接接口。

CY7C68013的GPIF引擎具有自动传输数据结构的特性,这种特性使得外围设备和主机通过CY7C68013可以无缝的、高速的传输数据。为了实现高速的数据传输,CY7C68013CPU不会直接参与数据的传输,而是直接利用GPIF的自动传输数据模式。图1和图2说明了主机IN和OUT数据传输过程。

2.1.1 端点缓冲区

FX2包含364字节端点缓冲区和4K可配置成不同方式的缓冲,其中364字节的缓冲区为EP0EP1INEP1OUTEP0作为控制端点用,它是一个双向端点,既可为IN也可为OUT。当需要控制传输数据时,FX2固件读写EP0缓冲区,但是8SETUP字节数据不会出现在这64字节EP0端点缓冲区中。EP1INEP1OUT使用独立的64字节缓冲区,FX2固件可配置这些端点为BULKINTERRUPTISOCHRONOUS传输方式,这两个端点和EP0一样只能被固件访问。这一点与大端点缓冲区EP2EP4EP6EP8不同,这四个端点缓冲区主要用来和片上或片外进行高带宽数据传输而无需固件的参与。EP2EP4EP6EP8是高带宽、大缓冲区。它们可被配置成不同的方式来适应带宽的需求。

2.1.2 接口信号

在利用GPIF进行高速数据传输系统设计时,GPIF waveforms的编辑是非常重要的,它控制着整个数据传输过程的读写时序。此时CPU的作用已经非常小了,它只起着下载代码到内部RAM以及在固件中如何触发GPIF waveforms的作用。FX2专门为GPIF提供了外围接口信号,如8位或16位的数据线、控制信号、Ready信号以及地址线。

IFCLK(双向时钟信号):IFCLK是一个参考时钟,可以配置成输入或输出。当配置为输出时,IFCLKFX2驱动为30MHz48MHz;当配置为输入时,时钟范围为548MHz

GPIFADR[8:0](输出):GPIF使用GPIFADR信号为外部设备提供地址线,在总线上地址值是自增的。

FD[15:0](双向):这是USB主机通过FX2和外部设备进行数据传输的数据线,它可配置成8位或16位。当16位时,FD[7:0]代表端点FIFO中的第一个字节,FD[15:8]代表第二个字节。

CTL[5:0](输出):FX2为外部设备提供了几个控制信号,如读写选通、使能等。

RDY[5:0](输入):FX2提供了几个状态检测信号,它可以检测外部设备的状态,如FIFO的空、满、半满等。

GSTATE[2:0](输出):这是调试信号,表示GPIF波形执行的状态,通常连接到逻辑分析仪上。

 

2.2   AD9238

AD9238是一个双通道的12位A/D转换器,采用单3V供电,速度可以是20MSPS、40MSPS和65MSPS;低功耗,工作在20MSPS时,功耗为180mW,40MSPS时,功耗为330mW,65MSPS时,功耗为600mW;具有500MHz 3dB带宽的差分输入;片上参考源及SHA;灵活的模拟输入范围:1Vp-p~2Vp-p;适用于:超声波设备,射频通讯,电池电源仪器,低价示波器等。本系统采用20MSPS的AD9238,可充分发挥USB在高速传输模式下的数据传输优势。

 

2.3   数据采集系统

该数据采集系统整个框图如图3所示,该系统由以下几部份组成:USB控制器、FIFOCPLDAD9238以及数据采集前端电路。

CPLD主要是控制时序,时钟分频等。FIFO主要是起着高速数据缓冲作用,当FIFO半满时,数据开始向USB主机发送。我们采用的是同步FIFO,时钟信号接IFCLK,当FIFO的/RD信号和/OE信号有效时,每个IFCLK上升沿就输出一个数据;当FIFO的/WR信号有效时,IFCLK上升沿就读进一个数据。AD9238的20MHz时钟信号是通过CPLD分频所得。当程序使能AD9238的/OEB_A和/OEB_B信号时,AD9238双通道开始进行数据采集并向FIFO写数据。

系统前端的调理电路采用的是AD公司的AD8138,该放大器具有较宽的模拟带宽(320MHz,-3dB,增益1),而且可以实现将单端输入变成差分输出的功能。此项功能在现代高速模数变换电路中非常有用,因为几乎所有的高速A/D芯片都要求模拟信号为差分输入,虽然部分芯片的手册中提到对于单端输入信号也可使用,但这样一来会使A/D转换结果的二次谐波增大,降低信噪比(SNR)。AD8138很好的解决了这个问题,用户可以很容易的将单端信号转换成差分输出而不必使用变压器,并且它的输入阻抗高达6MΩ,可以直接与输入信号相连而省略隔离放大器,大大精简了电路结构。图4为AD8138的典型应用电路。

3    软件设计
3.1 Windows驱动程序设计
USB设备驱动程序基于WDM。WDM型驱动程序是内核程序,与标准的Win32用户态程序不同。采用了分层处理的方法。通过它,用户不需要直接与硬件打它道(在USB驱动程序中尤为明显),只需通过下层驱动程序提供的接口号访问硬件。因此,USB设备驱动程序不必具体对硬件编程,所有的USB命令、读写操作通过总线驱动程序转给USB设备。但是,USB设备驱动程序必须定义与外部设备的通讯接口和通讯的数据格式,也必须定义与应用程序的接口。
Cypress公司提供了完整的CY7C68013驱动程序源码、控制面板程序及固件的框架,这大大提高了用户开发的进度。用户只需稍加修改或不需任何修改即可使用所带驱动程序,软件开发者大量的时间主要集中在应用程序和固件的开发。本文所述的数据采集系统驱动程序就在原来的基础上进行了简单的修改来满足我们的需要。根据我们自己的需求,一般只需修改DeviceIoControl例程,如我们主要增加了控制数据传输函数、启动和停止AD、复位FIFO等,即IOCTL_START_AD、IOCTL_STOP_AD、IOCTL_RESET_FIFO。

3.2 底层固件设计
要实现USB2.0的高带宽数据传输,必须使用它特有的GPIF特性,在开发固件前,首先必须根据实际需要对GPIF waveform进行编辑。CY7C68013开发工具中带有一个GPIF Designer,如图5所示,编辑完waveform后,选择Tools->Export to GPIF.c File来输出GPIF.c文件,然后将该文件加入keil c工程进行编译。
由于CY7C68013的EP2、EP4、EP6、EP8四个端点共享4K FIFO缓冲区,所以在该系统中,我们将EP2配置成4K的缓冲区,并设置为IN。用EP1OUT作为AD的控制参数传递,如启动和停止AD数据输出、复位FIFO等。在固件程序中,最重要的就是TD_Init()和TD_Poll()两个函数。[page]

在TD_Init()中主要完成GPIF相应寄存器的初始化,如下:
void TD_Init(void)             // Called once at startup
{
// set the CPU clock to 48MHz
  CPUCS = ((CPUCS & ~bmCLKSPD) | bmCLKSPD1);
  SYNCDELAY; 

  EP2CFG = 0XE8;     // EP2IN, bulk, size 1024, 4x buffered
  SYNCDELAY;                         
  EP4CFG = 0x00;     // EP4 not valid
  SYNCDELAY;              
  EP6CFG = 0x00;     // EP6 not valid     
  SYNCDELAY;
  EP8CFG = 0x00;     // EP8 not valid
  SYNCDELAY;
  
  
  FIFORESET = 0x80;  // set NAKALL bit to NAK all transfers from host
  SYNCDELAY;
  FIFORESET = 0x02;  // reset EP2 FIFO
  SYNCDELAY;
  FIFORESET = 0x00;  // clear NAKALL bit to resume normal operation
  SYNCDELAY;

  EP2FIFOCFG = 0x01; // allow core to see zero to one transition of auto out bit
  SYNCDELAY;
  EP2FIFOCFG = 0x11; // auto out mode, disable PKTEND zero length send, word ops
  SYNCDELAY;
  EP6FIFOCFG = 0x09; // auto in mode, disable PKTEND zero length send, word ops
  SYNCDELAY; 
  
  GpifInit (); // initialize GPIF registers
  
  SYNCDELAY;
  EP2GPIFFLGSEL = 0x02; // For EP2IN, GPIF uses FF flag
  SYNCDELAY;
  
  // global flowstate register initializations

FLOWLOGIC = FlowStates[19];      // 0011 0110b - LFUNC[1:0] = 00 (A AND B), //TERMA/B[2:0]=110 (FIFO Flag)
  SYNCDELAY;
  FLOWSTB = FlowStates[23];        // 0000 0100b - MSTB[2:0] = 100 (CTL4), not //used as strobe
  SYNCDELAY;
  GPIFHOLDAMOUNT = FlowStates[26]; // hold data for one half clock (10ns) assuming //48MHz IFCLK
  SYNCDELAY;
  FLOWSTBEDGE = FlowStates[24];    // move data on both edges of clock
  SYNCDELAY;
  FLOWSTBHPERIOD = FlowStates[25]; // 20.83ns half period
  SYNCDELAY;  

  // reset the external FIFO
  OEA |= 0x07;     // turn on PA0、 PA1、 PA2 as output pin
  IOA |= 0x07;     // pull PA0、 PA1、 PA2 high initially
  IOA &= 0xFB;     // bring PA2 low
  EZUSB_Delay (1); // keep PA2 low for ~1ms, more than enough time
  IOA |= 0x04;     // bring PA2 high and exit reset
IOA &= 0xFC;     // bring PA0、 PA1 low and enable AD
  
}
在TD_Poll()中主要完成外部FIFO状态的检测和数据的传输,主要程序部分如下:
void TD_Poll(void)
{
    if ( GPIFTRIG & 0x80 )                  // if GPIF interface IDLE
    { 
      if ( EXTFIFONOTEMPTY )                // if external FIFO is not empty
      {
        if ( !( EP24FIFOFLGS & 0x01 ) )     // if EP2 FIFO is not full
        {      
          if(enum_high_speed)
          {
            SYNCDELAY;    
            GPIFTCB1 = 0x02;   // setup transaction count (1024 //bytes/2 for word wide -> 0x0100)
            SYNCDELAY;
            GPIFTCB0 = 0x00;
            SYNCDELAY;
          }
          else
          {
            SYNCDELAY;
            GPIFTCB1 = 0x00;                // setup transaction count (64 bytes/2 
// for word wide -> 0x20)
            SYNCDELAY;
            GPIFTCB0 = 0x20;
            SYNCDELAY;
          }
  
          Setup_FLOWSTATE_Read();           // setup FLOWSTATE registers for 
// FIFO Read operation
          SYNCDELAY;
          GPIFTRIG = GPIFTRIGRD | GPIF_EP2; // launch GPIF FIFO READ 
//Transaction to EP2 FIFO
          SYNCDELAY;

          while( !( GPIFTRIG & 0x80 ) )     // poll GPIFTRIG.7 GPIF Done bit
          {
            ;
          }
    
          SYNCDELAY;
        }
      }
    }
}

4    结束语
笔者通过对该高速数据采集系统软硬件的设计,实现了双通道AD采集,采集速度可以达到20MSPS,但在此基础上还可以提高AD采集速度。

关键字:USB2.0总线  数据采集系统  CY7C68013 引用地址:基于USB2.0总线的高速数据采集系统设计

上一篇:基于单片机的节电照明控制系统
下一篇:用SH69P04实现USB/PS2 MOUSE的设计

推荐阅读最新更新时间:2024-03-16 13:30

基于USB接口的高增益数据采集系统研究
  0 引言        在现代工业生产和科学技术研究等各行业中,通常需要对各种数据进行采集。目前常用的通过数据采集板卡采集的方法存在着以下缺点:安装麻烦,易受机箱内环境的干扰而导致采集数据的失真,容易受计算机插槽数量和地址、中断资源的限制,可扩展性差。而带 RS-232 串口的数据采集器,在需要大批量、高速传输的场合下,其应用也受到限制。通用串行总线USB(Universal Serial Bus)的出现,很好地解决了上述问题,很容易实现便捷、高速、低成本、易扩展、高可靠性的数据采集,代表了现代数据采集系统的发展趋势。 1 硬件设计与实现    USB总线传输速度快,为了充分发挥USB总线这一优势
[嵌入式]
基于MSP430F149单片机的GPS定位数据采集系统设计
   O 引言   GPS(Global Positioning System,全球卫星定位系统)以其高精度、全天候、全天时的特点,在定位、导航、测距、授时遥感等领域广泛应用,并得到了快速的发展。设计一种基于嵌入式系统的 GPS 定位数据采集系统,根据GPS信号接收原理和嵌入式技术,该设计完成了基于单片机和计算机实现GPS 数据采集 ,并以良好的人机界面显示出系统所处的经纬度、海拔高度、X,Y坐标以及日期等信息,该系统已应用于某外场的车载定位试验中,代替了以前人工记录定位数据的烦琐,提高了效率。    1 系统描述   本设计利用TI的低功耗 MSP430F149 单片机的双串行接口,一路将GPS接收模块接收的定
[单片机]
基于MSP430F149单片机的GPS定位<font color='red'>数据采集系统</font>设计
基于CAN总线的车辆虚拟仪表数据采集系统设计
  1 引言   现在总线技术有很多种。从成本上讲,RS-232/485的成本都比CAN低;速度上讲,工业以太网等也都不错。为什么唯独CAN在汽车电子中得到亲睐?   从成本上来说,CAN比UART、RS-232/485高,但比以太网低;从实时性来说:CAN的实时性比UART和以太网高,为了保证安全,车用通信协议都是按周期性主动发送,不论是CAN还是LIN,对实时性要求高的消息其发送周期都小于10ms(每辆车都有好几条这样的消息),发动机、ABS和变速器都有几条这样的消息;从可靠性来说,CAN有一系列事故安全措施,这是UART和以太网都不具备的,多点冗余也是UART(点对点传输)和工业以太网(数据传输距离短)难于实现的,所以C
[单片机]
基于CAN<font color='red'>总线</font>的车辆虚拟仪表<font color='red'>数据采集系统</font>设计
基于AVR和CPLD的高速数据采集系统
输入系统的信息大多数是模拟量,为使计算机能够处理这些模拟量,必须经由数据采集系统将模拟量转化为数字量。CPLD是在PAL、GAL等逻辑器件的基础上发展起来的,CPLD的规模比较大,适合于时序、组合等逻辑电路的应用场合,它的高集成度能力大大缩小电路板的尺寸,降低了系统的成本,而且能够提高系统的性能和可靠性。 对于一个成型的探测系统而言,通常都是有采集储存部分的,无论是电信号、光信号、声音信号、磁信号等在被探测器接收到后大部分都需要转化为数字信号传给处理器才能完成分析、判断的过程。对于需要高速采集并存储的系统,常常需要购买昂贵的高速采集卡等设备,在基于CPLD、AVR等控制高速ADC、储存等技术的基础上,本文设计低成本、高 速采集存
[单片机]
基于AVR和CPLD的高速<font color='red'>数据采集系统</font>
基于CAN总线和DSP的双层数据采集系统的设计
  引言   CAN(Controller Area Network)即控制器区域网,CAN总线是由德国BOSCH公司为实现汽车测量和执行部件之间的数据通讯而设计的、支持分布式控制及实时控制的串行通讯网络。CAN BUS现场总线已由ISO/TC22 技术委员会批准为国际标准IOS11898(通讯速率小于1Mbps)和ISO11519(通讯速率小于125kbps)。CAN总线开始主要应用于自动化电子领域的汽车发动机部件、传感器、抗滑系统等应用中,但随着CAN的应用普及,CAN总线的实时性以及抗干扰能力强等优点也逐步为航天领域所认可。   本文将对CAN总线在航天领域应用情况进行介绍,并在CAN总线和DSP技术研究的基础上,设计了基
[嵌入式]
基于AD7714的高精度隔离数据采集系统
  在高精度及多路采样设备中,A/D芯片选用的恰当与否对系统整体性能的表现好坏非常关键。目前,由于数字信号处理技术的快速发展,对信号采集前向通道的器件要求也不断提高,特别是对器件的采样分辨率、采样速度以及采样通道数等参数的要求越来越严格。   本系统测量采用极化继电器的力臂控制盒仪器设计,需要测量的数据变化范围大,精度要求高,测量的通道数多。同时,由于本系统测量电路相对复杂,各信号间容易产生干扰,而高速运转的电机信号产生的干扰将会使系统瘫痪。针对上述情况,笔者采用多路输入、高精度的A/D转换器AD7714,与MCU之间的通信采用光电隔离技术。   1 AD7714的基本情况   AD7714是一个完整的用于低频测量应用
[嵌入式]
Verilog HDL设计自动数据采集系统
随着数字时代的到来,数字技术的应用已经渗透到了人类生活的各个方面。 数字系统发展在很大程度上得益于器件和集成技术的发展,著名的摩尔定律(Moore's Law)的预言也在集成电路的发展过程中被印证了,数字系统的设计理念和设计方法在这过程中发生了深刻的变化。从电子CAD、电子CAE到电子设计自动化(EDA),随着设计复杂程度的不断增加,设计的自动化程度越来越高。目前,EDA技术作为电子设计的通用平台,逐渐向支持系统级的设计发展;数字系统的设计也从图形设计方法向硬件描述语言设计方法发展。可编程器件在数字系统设计领域得到广泛应用,不仅缩短了系统开发周期,而且利用器件的现场可编程特性,可根据应用的要求对器件进行动态配置或编程,简单易
[嵌入式]
电子式互感器中数据采集系统误差补偿的设计与实现
   引言   随着电压等级的不断提高与电力系统规模的逐渐扩大,传统高压测试设备的绝缘问题日益突出,各种旨在解决超高压绝缘问题的测量方法应运而生。本文主要介绍了插接式智能组合电器中电子式光电组合互感器测试系统中的数据采集部分,分析了其静态与动态特性,并提出了相应的误差补偿方法。    电子式互感器测试系统   电子式互感器测试系统主要由数据采集、数据传输以及数据处理与输出3部分组成。基本电路结构如图1所示。   从图1可以看出,数据采集部分是整个测试系统的基础,对整个系统的准确度影响很大。由于采集系统采集的信号既有温度这样的缓变信号,又有电压、电流等周期信号,因此本文将对采集系统的静态及动态特性进行分析,以寻求改善采集
[电源管理]
电子式互感器中<font color='red'>数据采集系统</font>误差补偿的设计与实现
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
热门活动
换一批
更多
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved