基于ARM的智能车载终端设备系统的设计

发布者:cyzcee最新更新时间:2013-11-12 来源: eefocus关键字:车载终端设备  GPRS  无线通信 手机看文章 扫描二维码
随时随地手机看文章

 1 系统的整体构建

  智能车载管理系统由智能车载终端设备、GPRS无线通信链路以及主站监控中心3个部分组成。总体结构框图如图1所示。
图1 智能车载管理系统结构框图
  智能车载终端设备主要包括ARM微处理器、IC卡读写模块、语音提示模块、GPS定位模块、GPRS无线数据传输模块、LCD液晶显示模块和电源模块。本文将重点介绍智能车载终端设备的设计和实现,该终端主要实现以下功能:
① 公交刷卡消费:乘客持公交IC卡刷卡消费时由IC卡读写模块从卡内扣除相应的消费额,并把余额写回卡中。如刷卡成功,则蜂鸣器发出“嘀”的提示音;如刷卡出现异常,则语音模块发出“请重刷”或“请充值”等提示音。最后,把乘客每次的消费额和卡内的余额通过LCD液晶显示模块显示。
② GPS实时定位功能:通过不断地接收卫星传来的导航电文,车载终端通过GPRS无线数据传输模块定时向主站监控中心发送车辆当前经纬度、速度等信息,并在车载终端的LCD液晶显示模块上显示,主站监控中心接收该信息,并将车辆位置实时地显示在电子地图上。
③ 调度功能:车载终端通过GPRS无线数据传输模块接收主站监控中心发来的控制命令和调度信息,实现公交管理系统的实时调度功能。
2 车载终端的硬件设计
2.1 ARM微处理器
  在综合考虑系统性能和产品成本等因素的基础上,本系统选用LPC2103作为中央处理器。LPC2103是基于支持实时仿真的32位ARM7TDMIS核的微处理器,带有32 KB嵌入的高速Flash存储器。具有超小LQFP48封装和很低的功耗,内置宽范围的串行通信接口(包括多个UART接口、SPI和SSP接口、2条I2C总线接口),8 KB的片内SRAM,多个32位定时器,1个改良的10位ADC和多达13个边沿或电平触发的外部中断引脚的32条高速GPIO线,这些特性使其特别适用于工业控制和医疗系统等领域[1]。
图2 IC卡读写模块控制原理图
2.2 IC卡读写模块
  IC卡读写模块采用周立功公司生产的ZLG500A读写卡模块和ZY1730语音模块。IC卡读写模块控制原理图如图2所示。ZLG500A读写卡模块采用Philips公司高集成ISO 14443A读卡芯片MF RC500,与ARM微处理器之间采用三线SPI接口,分别为SCLK、SDATA、SS。ZLG500A读写卡模块通过天线与IC卡之间进行无线数据和能量的传输,最高速率可达106 Kbps,具有真正的反冲突功能,与IC卡通信时需要经过3轮确认,保密级别很高。
2.3 GPS定位模块
  本系统中GPS定位模块采用的是Gstar GS92,GPS定位模块硬件设计原理图如图3所示。该模块支持NMEA 0183 V3.01标准输出,工作电压为3.3~5.5 V,TTL电平接口,波特率可设置[2]。在本系统中,GS92模块的引脚4(RXDA)和引脚5(TXDA)分别与LPC2103的TXD0和RXD0相连,引脚8接LED指示灯,引脚21接3 V的备用电池。工作时,GPS模块与主控制器LPC2103进行通信,通过设置模块定时输出GPS定位数据,由主控制器对GPS数据进行处理,提取出经纬度、时间等有用信息作为GIS监控的基本数据。
图3 GPS定位模块硬件设计原理图
2.4 GPRS无线数据传输模块
  GPRS无线数据传输模块采用Simcom公司的GSM/GPRS双频模块SIM300C,该模块主要为语音传输、短消息和数据业务提供无线接口。SIM300C具有独立的语音接口,配合车载终端上的LCD显示屏和操作键盘,可以方便地拨打电话。SIM300C模块与主控制器LPC2103通过UART1接口进行通信,传输速率设置为115 200 bps。模块与控制器间的通信协议是AT命令集,除了串口发送(TXD)、串口接收(RXD)之外还需要一些硬件握手信号,其中DCD信号用来检测GPRS无线数据传输模块是处于数据传送状态还是处于AT命令传送状态,DTR信号用来通知GPRS无线数据传输模块传送工作是否已经结束[3]。GPRS无线数据传输模块硬件设计原理图如图4所示。[page]
图4 GPRS硬件设计原理图
3 车载终端的软件设计
  本系统选用源代码开放的实时操作系统μC/OSII,下面从μC/OSII操作系统的移植和用户应用程序的编写两方面介绍系统软件的设计。
3.1 μC/OSII操作系统的移植
  μC/OSII的移植实际上就是对与MCU相关的代码进行重写或修改,移植的主要工作是对与处理器有关的3个文件OS_CPU.H、OSCPU.C和OS_CPU_A.S的编写。
  OS_CPU.H:主要包括了数据类型、堆栈入口宽度、堆栈增长方向、开关中断的宏和进行任务切换的宏定义,宏可由typedef或#define来定义。
  OS_CPU.C:该文件中用C语言编写了6个与操作系统相关的函数:OSTaskStkInit()、OSTaskCreateHook()、OSTaskDelHook()、OSTaskSwHook()、OSTaskStatHook()、OSTimeTickHook()。其中,OSTaskStkInit()为堆栈初始化函数,必须根据具体的堆栈结构进行编写;OSTaskCreate()和OSTaskCreateExt()通过调用该函数,初始化任务的堆栈结构;后5个函数为钩子函数,必须声明,在移植初期可以为空函数。
  OS_CPU_A.S:该文件中需要对处理器的寄存器进行操作,需要修改3个与处理器相关的函数:最高优先级任务调用函数OSStartHighRdy()、任务切换函数OSCtxSw()、中断任务切换函数OSIntCtxSw()[4]。
3.2 用户应用程序的设计
  本系统采用多任务、多进程模式,将各功能应用程序设计为不同的功能模块,加载为多个不同优先级的并发进程。各功能模块优先次序如下:IC刷卡应用程序设为第1优先级,GPS定位信息采集和处理程序设为第2优先级,GPRS无线数据传输设为第3优先级,LCD显示程序设置为第4优先级。
3.2.1 刷卡模块程序设计
  ZLG500A读写卡模块与IC卡之间的通信流程如图5所示。
图5 ZLG500A对IC操作的基本流程图
  首先,模块上电复位后,请求标准/所有的卡。如果在天线有效范围内有一张以上的卡存在,调用反冲突函数uchar miffs_anticoll(uchar _Bcnt,uchar idata *_SNR),并取得所选择的卡的唯一序列号。选中卡之后,根据所要访问的卡内存储器位置,使用相应的密钥进行3轮确认。在成功确认后,可以对卡内存储器进行读、写、增值、减值等一系列操作。以上这些步骤可以直接调用周立功公司提供的读写卡模块C51函数库[5]实现。
  在主程序中,设置定时器0作为SPI串行接口的看门狗定时器,该定时器被设置成50 ms溢出。数据发送时开定时器中断,若中断之前通信未能完成(ZLG500A在SDATA线上未返回响应信号),而造成该定时器产生中断,则取消本次传输,发送子程序返回SPI_ERR;数据接收时关中断,用软件判断溢出次数,若在500 ms内未收到ZLG500A返回的数据,则退出本次命令的执行,命令返回SPI_ERR。
3.2.2 GPS数据解析及处理
  车载终端工作时,GPS模块会源源不断地把接收到的GPS导航定位信息通过串行口输出给ARM微处理器,这些数据信息主要由帧头、帧尾和帧内数据组成。系统所需的GPS数据,如经纬度、时间日期、速度等信息,均包含在“$GPRMC”帧内。“$GPRMC”的帧格式如下:
  $GPRMC,024813.640,A,3158.4608,N,11848.3737,E,10.05,324.27,150706,,,A*50
  数据接收时,首先通过依次检测“$GPRMC”的ASCII码是否正确。若检测无误,则确认该帧为有效帧,再接收帧内数据并进行解析。然后按照表1的协议封装成UDP数据包,通过GPRS传输到主控中心,主控中心通过软件将车辆的位置实时显示在电子地图上。GPS数据传输协议如表1所列。
表1 GPS数据传输协议
3.2.3 GPRS数据传输
  由于本系统所用的GPRS模块SIM300C内部嵌入了TCP/IP协议栈,因此只要发送相关AT指令,嵌入式TCP/IP协议就可完成SIM300C接入Internet的工作,实现无线数据传输的功能。
  利用AT指令控制SIM300C模块建立无线信道,并进行数据传输的步骤如下:
① AT+CIPCSGP=1,"CMNET"设置GPRS连接方式。
② AT+CLPORT="TCP","3030"设置TCP端口号。
③ AT+CIPSTART="TCP","主站IP地址","端口号"建立TCP连接,主站的IP地址必须为公网的IP地址,连接成功后返回“CONNECT OK”。
④ AT+CIPSEND等待模块返回“>”后,将要发送的数据送入GPRS模块中,然后再发送回车,数据即可发送出去。
  若建立连接后长时间没有数据传输,移动网关将会自动关闭连接,重新分配IP地址。所以,为了保证网络的正常连接,采用每2 min发送一个心跳包的方式。
结语
  本文提出了一种基于ARM微处理器和μC/OSII操作系统的智能车载终端设计方案,利用GPS、GPRS和IC卡读写等技术,实现公交刷卡消费和实时定位监控等功能的一体化,将城市中所有的公交车连成一个网络系统,形成一个城市交通物联网的雏形。实验证明,该智能车载终端具有模块化、功耗低、性能稳定、可扩展等特点。
关键字:车载终端设备  GPRS  无线通信 引用地址:基于ARM的智能车载终端设备系统的设计

上一篇:基于ARM Linux的电子控制油门设计
下一篇:ARM和GPRS相配合的软件无线升级系统

推荐阅读最新更新时间:2024-03-16 13:30

基于GPRS的水文信息远程监测系统的设计方案
  0 引言   水文信息是衡量水资源的重要指标,其中地下水位的变化与地下水的开采量和地面沉降有着密切的关系,对控制地面沉降具有重要的意义。传统的水文监测主要依靠人工、半人工的监测手段,造成了工作量大、效率低、数据处理繁杂易错、信息传输时效性差等问题,既不适应信息化的发展,又不能满足现代化管理的需要。而且劳动强度也很大,测量精度无法保障,尤其是监测一些地理位置比较偏远或分散的监测点,工作难度更大。   为了合理利用水资源,充分了解各个流域水资源的状况,实现水文信息的自动化监测及远程管理,合理利用计算机技术、高精度的测量仪器、公众通信平台等工具,对实现水文信息的远程实时同步动态监测有重要意义。   随着无线通信技术的发展,我国
[单片机]
基于<font color='red'>GPRS</font>的水文信息远程监测系统的设计方案
基于GPRS的开关磁阻电机控制器远程控制系统
GPRS技术是在现有的GSM系统上发展出来的一种新的分组数据承载业务,其最大优势在于它的数据传输速度大大提高,目前已达到了115Kbps,其次GPRS是按GSM标准定义的封包交换协议,可快速接入数据网络。它在移动终端和网络之间实现了"永远在线"的连接,网络容量只有在实际进行传输时在被占用,基于这些优势,GPRS技术适合进行数据传输,同时由于其可靠性,可以进行远程控制的设计,本文以油田抽油机为实际应用背景,介绍基于GPRS技术的开关磁阻电机调速系统远程控制的架构和具体实现。 系统整体结构 本系统是通过上位机操作系统,例如无线网络远程控制应用于油田抽油机的开关磁阻电机,控制开关磁阻电机的启动、停止、复位以及转速设定等参数,并对电机
[应用]
智能家居十大热门技术,除了LED灯泡/语音控制还有啥
智能家居 是在互联网影响之下物联化的体现。智能家居通过物联网技术将家中的各种设备,如音视频设备、 照明系统、窗帘控制等连接到一起,提供家电控制、电话远程控制、室内外遥控、防盗报警以及可编程定时控制等多种功能和手段。因此智能家居行业的发展受到多种技术的影响。   一、 LED 灯泡     自从爱迪生发明了白炽灯泡,白炽灯泡长期占领我们的生活,直到发光二极管应用在灯泡中,LED灯泡由此诞生。它可以直接把电转化为光。具有效率高、寿命长的特点,可连续使用10万小时,比普通白炽灯泡长100倍。LED灯源技术发展,已经克服了高价格、无法调光、不稳定的缺点,且LED灯泡的可控制性可以融入智能系统中。新形式融合下的LED灯源被设计成白炽灯的样
[嵌入式]
小型足球机器人的无线通信系统设计
摘要:介绍了一种用于Robocup F-180小型组足球机器人比赛的无线通信系统的设计。包括发送端和接收端系统的硬件设计和实现及其软件设计。给出了一种适应于这套系统的通信协议,包括物理层的编码设计、纠错编码设计和帧结构设计。 关键词:串行通信 无线通信 机器人 足球机器人是一个极富挑战性的高技术密集 密集型项目,融小车机械、机器人学、机电一体化、单片机、数据融合、精密仪器、实时数字信号处理、图像处理与图像识别、知识工程与专家系统、决策、轨迹规划、自组织与自学习理论、多智能体协调以及无线通信等理论和技术于一体,既是一个典型的智能机器人系统,又为研究发展多智能体系统、多机器人之间的合作与对抗提供了生动的研究模型。它通过提供一个标
[应用]
一种GPRS无线LED显示屏信息发布系统用于产品的实现
  一、概述   由于传统的LED 显示屏的信息输入只能通过数据线与电脑直接连接来进行,因此对于传统LED显示屏来说不能满足远程信息实时发布的需要,因而不能构建大规模的联网式LED 屏信息发布系统。由上海正伟数字开发的LED 信息发布系统则可以有效解决LED 显示屏远程组网的问题。该系统基于GPRS 无线网络技术,提供通用LED 通信控制接口,实现对LED 显示屏的大规模的组网。无论是普通的文字条屏,还是大屏幕的图文屏,只要接上LED 无线传输终端,就能马上打破传统LED显示屏的限制,成为能够大规模联网的无线LED显示屏信息显示屏。无线LED 信息显示屏是一种全新的信息媒体,一经面世,便被广泛的社会团体所接受,其"流动"显示和联
[电源管理]
GPS/GPRS车载监控终端的设计与实现
近年来,随着汽车的普及和道路的建设,城际间的经济往来更加频繁,活动的区域也越来越大,由此产生了交通拥挤、车祸增加、废气排放量增加等严重问题。智能交通系统(IntelligentTransportSystem)的出现有效地改善了以上各种交通问题。智能交通系统是将先进的信息技术、通讯技术、传感技术、控制技术以及计算机技术等有效地集成运用于整个交通运输管理体系,而建立起的一种在大范围内、全方位发挥作用的,实时、准确、高效的综合的运输和管理系统。它通过人、车、路的和谐、密切配合提高交通运输效率,缓解交通阻塞,提高路网通过能力,较少交通事故,降低能源消耗,减轻环境污染。 车载监控系统是智能交通系统的一个分支,它集先进的无线定位技术、地理信
[单片机]
GPS/<font color='red'>GPRS</font><font color='red'>车载</font>监控终端的设计与实现
采用无线通信技术的新型数控系统
  作者:王治森,曹斌,高荣   引言   近年来移动通信技术和掌上电脑的飞速发展及其在其他领域的广泛应用,必将对制造业产生深刻的影响,并为数字化制造带来重大的机遇和挑战。在网络环境下的数字化制造不仅仅取决于企业上层管理和设计的数字化和信息化,也取决于车间底层的数字化和信息化。我们提出一种基于移动通信技术的人机协同的新型数字化制造模式,它把无线移动通信技术引进来,创建一种以人为中心的能充分发挥“人的智能”和“机器智能”的分布式人机协同工作模式。车间数字助理(Shop Floor PDA)和新型数控系统构成了这种新型制造模式的两个核心环节。本文只讨论后者。   采用无线通信技术的新型开放式数控系统   采用无线通信技术的新型
[应用]
腾达别墅路由nova荣获中关村在线“2017年度推荐产品奖”
近日,中关村在线年度科技产品大奖评选结果出炉,腾达别墅路由nova凭借优秀的产品性能和良好的用户口碑,成功获得专业评审的青睐,荣获中关村在线“2017年度推荐产品奖”。 据悉,ZOL年度科技产品大奖的奖项分设“年度卓越产品奖”、“年度优秀产品奖”、“年度推荐产品奖”三项大奖。每个奖项均经过ZOL百人专业评审团通过创新程度、应用价值及性价比三个维度, 限定入围、市场考验、百项测试、编辑推选、网友票选、专家定审六道工序,历时2个月最终评选出来的。此次评选涉及产品覆盖移动(通信)设备、PC与平板电脑、智能出行产品、计算机外设产品、生活家电等15个类别。其中,腾达别墅路由nova荣获中关村在线年度计算机外设产品类 “2017年度推荐产
[网络通信]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved