在高功率因数校正AC/DC电路中广泛采用UC3842、UC3855A等专用控制芯片来实现功率因数校正,而在移相全桥DC/DC电路中广泛采用TL494、UC3875等专用电源芯片来驱动开关管,特定的电源芯片本身不可编程、可控性较差、难以扩展以及不易升级维修,同时电源芯片为模拟控制芯片,具有模拟电路难以克服的由温漂和老化所引起的误差,无法保证系统始终具有高精度和可靠性,克服以上缺点可采用数字控制器DSP代替传统的模拟控制芯片。目前数字处理(DSP)技术逐渐成熟,新一代DSP采用哈佛结构、流水线操作,即程序、数据存储器彼此独立,在每一时钟周期中完成取指、译码、读数据以及执行指令等多个操作,从而大大减少指令执行周期。另外,由于其特有的寄存器结构,功能强大的寻址方式,灵活的指令系统及其强大的浮点运算能力,使得DSP不仅运算能力较单片机有了较大地提高,而且在该处理器上更容易实现高级语言。正是由于其特殊的结构设计和超强的运算能力,使得以前需要硬件才能实现的功能可移植到DSP中用软件实现,使数字信号处理中的一些理论和算法可以实时实现。
1 数字控制开关电源系统
该通信开关电源主要由主电路和控制电路组成,主电路主要由单相高功率因数校正AC/DC变换电路和移相全桥软开关DC/DC变换电路组成,它包括单相交流输入电源、滤波网络、整流电路、Boost高功率因数校正电路和移相全桥变换电路。控制电路主要包括DSP数字控制器,它由DSP、驱动电路、检测电路、保护电路以及辅助电源电路组成。系统主电路和控制电路原理框图如图1所示,图1中E表示输入电压及电感电流、输出电压及电流和主开关管漏极电压、采样电路;B表示功率开关驱动电路;F表示输出电压及电流、原边电感电流和4个开关管漏极电压采样电路。
1.1 单相功率因数校正AC/DC变换电路
单相功率因数校正AC/DC变换电路采用Boost型ZVT-PWM变换器,其电路图如图2所示。该电路能实现主开关管S的零电压开通和二极管D的零电流关断。
1.2 移相全桥软开关DC/DC变换电路
移相全桥软开关DC/DC变换电路采用如图3所示的全桥DC/DC变换器。
1.3 基于DSP的硬件电路设计
针对TMS320F2812为核心的数字控制电路如图4所示。从图4中可以看出,控制系统主要包括以下几部分:DSP及其外围电路、信号检测与调理电路、驱动电路和保护电路。[page]
其中,信号检测与调理电路主要完成对图2输入电流和电压采样、A/D等功能,DSP产生脉冲信号然后通过D/A转换后驱动图2,3的功率开关管。
1.4 系统控制算法软件实现
DSP数字控制能够实现较之模拟控制更为高级而且复杂的策略,与模拟控制电路相比较,数字控制电路拥有更多的优点:数字PID系统相对于模拟PID系统具有设计周期短、灵活多变易于实现模块化管理,能够消除因离散元件引起的不稳定和电磁干扰等优点。数字控制系统主程序图如5所示。主程序的作用:初始化,其中包括给控制寄存器赋初值,这时系统工作时钟开CAP1INT、CAP2INT中断,在等待中断的空闲时间内采集输出信号,设置ADC转换结束标志位为1.为保证程序的正常运行要禁止看门狗,设置PWM信号的频率和死区时间,设置通用定时器1和2的控制寄存器,设置捕获控制寄存器检测下降沿。
2 实验结果及其分析
设交流输入电压220V,输出电压为48V,输出功率为1000W,效率为95%,变换器工作频率为100kHz.
2.1 单相功率因数校正AC/DC变换器升压电感计算
Boost升压电感的计算必须是在最差的情况下得到,即输入最低电压,而输出满载的时候来确定,其输入电流:
允许的纹波电流一般是取输入电流的20%,即:
在最低线电压时最小占空比为:
由电磁感应的基本公式推导出临界电感为:
因此可取升压电感L=470H.
2.2 移相全桥软开关变换器滤波输出电容计算
选择输出电容时,电容的输出电压维持时间非常重要。当输入能量截止时,要求电容电压仍可维持在某特定范围内,输出滤波电容由以下公式计算:
2.3 仿真结果及分析
为了验证基于DSP控制数字开关电源设计的可行性和参数选择的正确性,利用Pspice软件对图1所示的系统进行仿真,仿真波形图如图6,7所示。图6为输入交流电压和电流仿真波形图,从图6中能清楚的看到输入电流很好跟随交流输入电压,实现了功率因数校正的目的。图7所示为输出电压仿真波形,从图7中可以看到输出为一条比较光滑的48V直流电压。仿真结果跟理论计算的结果完全符合,达到了预期的目的。[page]
2.4 试验结果及分析
最后,设计了基于TMS320F2812的功率因数校正实验电路,实验结果如图8所示,该图为输入电压和输入电流波形,波形显示了输入电流很好的跟随了输入电压,达到了功率因数校正的目的。实验结果表明在通信开关电源中用数字控制器代替模拟控制器是可行的。
3 结语
数字开关电源相对模拟开关电源,具有不可比拟的优势,如减少电源的体积和重量,提高控制精度以及维修升级方便。
随着控制理论与实施手段的不断完善以及DSP价格不断的降低,数字控制开关电源将成为今后一个重要的研究方向。
关键字:数字控制 开关电源
引用地址:
基于数字控制的开关电源设计与实现
推荐阅读最新更新时间:2024-03-16 13:37
VIPer53设计的12V/3A 的副边反馈的开关电源电路
如图是一个应用VIPer53设计的12V/3A 的副边反馈的开关电源,其输入电压范为 85~265Vac,电源的工作频率是60kHz。 线性光电耦合器 Opto1、可调精密电压基准源TL431 和C8 组成一个一阶控制的负反馈 闭环系统。通过电阻R7 和R8 构成的输出电压采样电路,将电压信号与TL431 内部2.5V 的 电压基准进行比较而形成的误差电压来改变 Opto1 中的LED 流过的电流,即控制光接受三 极管的开度来使VIPer53 发出脉宽控制信号,调节VIPer53 的输出占空比范围使用输出电压 保持不变,最终达到稳压的作用。
[电源管理]
数字控制技术:改善功率密度及电源管理功能的高招
在一个电源系统中有许多地方可以采用数字技术,一个是电源内部电路本身,还有就是在系统级实现功率管理和监控功能。本文将针对第一种情况进行 详细讨论。文中比较了板载电源(BMPS)的内部控制功能采用数字技术和更传统的模拟方法的系统级实现效果。对于比较中所提到的每一个方案,BMPS的最 终用户都可以采用传统的方式来使用器件,而无需额外的系统级数字技术。比较依赖了实际的案例研究,利用了实际的产品单元作为参考基准。研究中使用了两种数 字设计方案。一种是尺寸优化设计,它提供与模拟设计相近的输出功率,但具有较小的物理尺寸。另一种方案则是输出优化设计,即维持与模拟设计类似的外形尺 寸,但使输出功率增加。在所有的三种设计方法中,基本的功率传递拓扑结构
[电源管理]
SC2463多路输出开关电源控制器及其应用
SC2463是一个高性能多输出降压转换控制器。它可以被配置用在不同的电源管理应用中,比如有多路输出电压需求的ADSL电源,需要正负电压的混合信号电源,电脑调制解调器电源,基站电源,通用的多路输出电压的电源系统。
描述
SC2463提供了4.5V至30V的宽输入电压范围,两个可设置达700 kHz开关频率的开关转换器,能提供高达15A输出电流及低至0.5V输出电压。它还提供了两个正输出电压线性调节器。芯片TSS0P一28小封装极大地减小了线路板面积。
SC2463两个异相降压开关转换器可以减小输入电流纹波,允许使用更少的输入电容。高达700kHz的开关频率可以减少输出电压纹波并且降低噪音,同时还可以减小输出电感和电容
[电源管理]
高频开关电源安装应注意事项
1、把整流器安放好,并保持其稳定,为保证整流器通风良好,其前后左右0.5m以内不要有任何物体。另外,避免电源在充满粉尘和腐蚀性气体的环境中工作,并远离产热源,和潮湿地带,相对湿度5%~70%,环境温度-25℃~40℃,以延长机器寿命。 2、检查一下机器外壳有无松动,端口有无在运输过程中损坏,确认三相空气开关处于断开位置。 3、找出电源输入线,分别接好引线,将远控线对好插座的凹凸部位插牢并旋紧。 4、机箱后面外壳左下角有“ ”标识,请接入大地,预防静电。 5、将功率调节旋钮⑤逆时针旋转到底(最小状态)。 6、闭合空气开关,此时风扇开始转动,电源指示灯①亮。故障灯④会闪烁数次随即熄灭。 7、将“工作/待机”开关②拨至“待机”档,然后拨
[电源管理]
LED开关电源五大实用保护电路图
LED开关电源过电流保护电路、LED开关电源过电压保护电路、LED开关电源软启动保护电路、LED开关电源过热保护电路……行内人士贡献五大实用电路图,同你做好LED开关电源的保护设计。 LED开关电源过电流保护电路 在直流LED开关电源电路中,为了保护调整管在电路短路、电流增大时不被烧毁。其基本方法是,当输出电流超过某一值时,调整管处于反向偏置状态,从而截止,自动切断电路电流。如图1所示,过电流保护电路由三极管BG2 和分压电阻R4、R5组成。电路正常工作时,通过R4与R5的压作用,使得BG2 的基极电位比发射极电位高,发射结承受反向电压。于是BG2 处于截止状态(相当于开路),对稳压电路没有影响。当电路短路时,输出
[电源管理]
机顶盒与液晶电视用的低价简易开关电源设计
前言
传统电子消费产品的AC-DC开关电源,通常需要带有多组输出隔离变压器并由一片原边电源控制器控制输出电压和电流,但这类多组输出电源的输出电流都比较小,稳定的输出电压是通过线性稳压管来实现。从设计与制造及使用的角度来看,比较麻烦而且成本也较高。需指出的是,其线性稳压管只能应用于高电压和低电流,故此种电源在应用上局限性很大,己远远不能适应新一代电子消费产品的需要。
这是由于新一代电子消费产品如机顶盒,液晶电视(或高清晰度电视)需要的是能提供大输出电流和低输出电压的低价高效率开关电源,从而促使许多产品设计需采用分散式电源模式,也就是说,产品设计更倾向于选择在市场上很容易采购到的AC-DC适配器并把多组直流电源直接安装在
[应用]
关于STM32F107VCT6串口DMA接收数字控制LED亮灭的功能实现
主函数中代码如下: #include stm32f10x.h void GPIO_Config(void); void USART_Config(void); void DMA_Config(void); void NVIC_Config(void); void LED1_ON(void); void LED2_ON(void); void LED3_ON(void); void LED4_ON(void); void LED_ALL_OFF(void); void delay(void); uint8_t DMA_BUFFER ; int main() { GPIO_Config(); USART_Co
[单片机]
全桥式变压器开关电源的优缺点
1-8-3-5.全桥式变压器开关电源的优缺点 全桥式变压器开关电源与推挽式变压器开关电源一样,由于两组开关器件轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。因此,全桥式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,其输出电压的电压脉动系数Sv和电流脉动系数Si都很小,仅需要一个很小值的储能滤波电容或储能滤波电感,就可以得到一个电压纹波和电流纹波都很小的输出电压。 全桥式变压器开关电源最大的优点是,对4个开关器件的耐压要求比推挽式变压器开关电源对两个开关器件的耐压要求可以降低一半。因为,全桥式变压器开关电源4个开关器件分成两组,工作时2个开关器件互相串联,关断时,每个开
[电源管理]