数字控制技术:改善功率密度及电源管理功能的高招

最新更新时间:2011-06-04来源: 互联网关键字:数控技术  功率密度 手机看文章 扫描二维码
随时随地手机看文章
 在一个电源系统中有许多地方可以采用数字技术,一个是电源内部电路本身,还有就是在系统级实现功率管理和监控功能。本文将针对第一种情况进行 详细讨论。文中比较了板载电源(BMPS)的内部控制功能采用数字技术和更传统的模拟方法的系统级实现效果。对于比较中所提到的每一个方案,BMPS的最 终用户都可以采用传统的方式来使用器件,而无需额外的系统级数字技术。比较依赖了实际的案例研究,利用了实际的产品单元作为参考基准。研究中使用了两种数 字设计方案。一种是尺寸优化设计,它提供与模拟设计相近的输出功率,但具有较小的物理尺寸。另一种方案则是输出优化设计,即维持与模拟设计类似的外形尺 寸,但使输出功率增加。在所有的三种设计方法中,基本的功率传递拓扑结构保持不变,从而将比较的焦点集中在如何利用数字控制技术实现设计的灵活度方面。比 较中感兴趣的一些方面包括电气性能、效率、元器件数量、功率密度、成本和可靠性。比较是站在最终用户而不是BMPS设计师的利益角度上进行的。

  本案例比较中所用的BMPS是爱立信公司的PMH8918L负载点(POL)稳压器[1]。这是一款电流为18A的非隔离同步降压稳压器,其输 出电压可编程,额定输入电压为12V。该产品是一款最新的产品,其多项指标都具有竞争性,所以它是使用模拟控制的负载点稳压器的最好代表。在先前发表的文 章中,曾经估计到对于相同的18A的输出电流,采用数字技术可以使PCB面积减小40-50%,或者说,对于相同的封装尺寸,输出电流可以增加到35A。 本文将证明在采用数字控制技术时,这些估计实际上还太过保守,甚至有可能实现更高的功率和电流密度。

  除了考虑POL稳压器的数字控制本身为用户带来的好处之外,在数字部分还增加了一个新的接口连接器,从而使得电源系统中可以随意地利用数字电源 管理技术。该连接器的增加并不改变POL的性能,或者说不会改变模拟和数字控制方法学的比较结果。该连接器的增加,证明了这项可选系统功能的实现对 BMPS的成本和体积并没有实质的不利影响。

  如上所述,本文内容局限于BMPS层级上的技术和性能的折衷。为了获取更多的相关内容,包括数字技术在电源系统管理领域中的扩展,读者可以直接参见参考目录[4]中的白皮书。

 

  案例研究设计

 

  1. 现有的18A模拟产品

  爱立信PMH8918L负载点(POL)稳压器的额定输出电流为18A。它采用非隔离的同步降压技术,带有一个传统的模拟控制环路,开关频率为 320kHz。输出电压可编程,范围为1.2-5.5V,输入电压为12V。输出电压为3.3V时的效率大于92%,计算出来的MTBF为380万小时。

  图1左上方MOSFET的RDS-ON为8.8mΩ,栅极电荷Qg为11nC。而图1左下方MOSFET的相应参数则分别为4.0mΩ和27nC。输出电感的额定值为1.2μH,其电阻为2.3mΩ。

 

  

  

  图1 PMH8918L模拟设计与尺寸优化的数字设计的比较。

 

  PMH8918LPOL稳压器的尺寸为38.1x22.1x9.0mm。通孔版的图片如图1左所示。

  2. 尺寸优化的20A数字设计

  构建的数控POL稳压器能够提供与模拟PMH8918L大致一样的输出电流和功率。所采用的基本拓扑结构是一样的。为了优化尺寸重新设计了PCB版图。最终POL稳压器的尺寸为25.4x12.7x8.5mm,所能提供的最大输出电流为20A。

  重要的是应该知道在该设计中,已经将尺寸大幅减小变为可能,这是因为减少了与数字控制实现相关的元器件数量。高集成度省去了模拟设计中所用的几 个辅助分立器件。通过仔细选择MOSFET,并将MOSFET的开关损耗和传导损耗之和减到最小,来实现效率的最优化。图1右上方的FET的RDS-ON 为3.4mΩ,Qg为30nC;而图1右下方的FET的相应值则分别为1.8mΩ和47nC。输出电感的额定值为1.2μ H,其电阻为2.3mΩ。由于新器件RDS-ON的降低,加上源极电感的减小,使得总的传导和开关损耗降低,从而实现了满负载时的最佳效率。 输出电感为1.0μH,电阻为2.3mΩ。另外PCB的覆铜量也有所改变,从而改进了热管理,降低了传导损耗。

  本设计中所用的控制芯片具备“效率优化的空载时间控制”功能。该功能导致了效率的提高,这将在下面进行论证。在参考资料[2]中可以看到有关该技术的更多细节。这种POL稳压器的开关频率为320kHz。

  在本案例研究中,为数字控制POL稳压器加入了一个新型信号接口,不过它并不影响设计的性能,也并非基本功能所必需。没有采用适合电源连接的大 电流引脚,而是设计了一个简单的、标准的和高性价比的10芯连接器。如果最终用户需要,该连接器可以用来与系统级电源管理电路进行通信并配置POL稳压 器。设计中引入连接器时,并不影响封装尺寸。图1右所示的是一个完整的20A尺寸优化的数字设计。

3. 输出优化的40A设计

  构建的另一个数控POL稳压器的尺寸与模拟PMH8918L基本相同,但输出电流得到了提高。最终的尺寸比模拟设计的尺寸略小一点,为30.0x20.0x8.5mm。而该POL稳压器的输出电流提高到了40A。

  为了提供更高的输出电流,该设计中采用了并联MOSFET。FET器件的选用准则与尺寸优化设计中相同。图2右上方的FET的参数如下:RDS -ON为1.7mΩ,Qg为60nC。而图2右下方的FET相应参数则分别为0.6mΩ和141nC。电感为0.82μH 而电阻为1.7mΩ,进一步降低了电阻损耗。该设计的开关频率也是320kHz。所用的控制芯片与20A数字设计中的相同。

  图2右显示的是40A输出优化设计的照片。

 

  

  

  图2 PMH8918L模拟设计与输出优化的数字设计的比较。

 

  性能比较

 

  根据通常所采用的电气性能参数对上述三种设计进行了表征。这些参数包括输出能力、负载调整、效率、纹波、噪 声和动态响应。但由于篇幅有限,这里只详细地讨论效率,因为它对最终用户来说是一个最重要的关键参数。对于上述的其它参数,总体说来两种数字设计的性能要 等同于或更高于模拟设计。参考资料[3]中给出了一些初步的比较结果。

  1. 效率

  比较中所用的PMH8918L是一款大电流POL稳压器。对于这类产品,转换效率是最重要的,因为它对系统的热设计、最终封装密度、以及确定终端设备所需的输入电源具有很大的影响。因此,如果要求数字设计在效率上进行折衷的话,将是一个难以接受的方案。

 

  

  图3 模拟设计方案的效率,Vout=3.3V,T=25℃

  

  图4 20A数字设计方案的效率,Vout=3.3V,T=25℃

  

  图5 40A数字设计方案的效率,Vout=3.3V,T=25℃

 

  图3、4、5中的曲线分别为上述三种设计的效率与输出电流的关系。每组数据都是在输入电压为12V,输出电压为3.3V以及环境温度为25℃的 条件下获得的。比较20A的数字设计和18A的模拟设计,发现尽管数字模块的尺寸小了许多,但数字设计在全部的负载范围上的效率都得到了改善。在半负载点 上,数字POL稳压器的效率改善了1.1%(为93.8%),而在满负载点上效率提高了1.2%(达到92.5%)。数字设计效率的改善主要归功于辅助电 路的减少、空闲时间控制以及更优化的功率传递。

  由于基准模拟POL稳压器的特性是在12V的输入电压下获得的,故在数字设计中也采用相同的输入电压以便比较。顺便说明,对于数字设计来说,采 用更低的输入电压时效率会更高。例如,当输入电压为9.6V时,在半负载点上效率又提高1%(达到94.8%)。关于这点在研究整体电源系统优化时将是非 常有趣的问题。

  40A的数字设计专为大电流作了优化,这反映在图5中15-30A范围内的效率性能曲线上。当输出电流低于10A时,它包括了18A模拟设计的 可用工作范围的绝大部分,其效率要比模拟POL稳压器略微低一些,这是由于较高的开关损耗所致。但在半负载点上(20A),其效率达到93.7%,比相同 输出电流的模拟设计提高了2.4%。即便是在40A的满负载点上,效率仍达91.9%,也比相应的模拟POL稳压器高0.6%。故在所有关注的设计范围 内,40A数字设计的效率也优于模拟设计。改善的原因归结于所采用的元器件数量与20A设计一样多。而当输入电压为9.6V时,40A设计的效率也能够再 提高1%。

  尽管40A数字设计的效率比模拟POL稳压器高且尺寸相当,但由于它的输出功率和电流提高了一倍,其功耗还是比较大。从需要从BMPS上散发的 热量来看,这导致了较高的功率密度。先前模拟设计的尺寸受元器件封装密度的限制,而这类的数字设计的尺寸则主要受限于对BMPS进行散热的散热器结构。也 就是说,如果采用传统的封装材料和冷却通道,用这种尺寸的BMPS来产生40A电流,将需要额外地考虑最终用户设备中的热管理和环境温度。

  2. 封装密度

  封装密度主要受效率的影响,这对最终用户来说具有同等的重要性。下面将会提到,数字设计的元器件的减少,对所实现的高封装密度贡献很大。我们计 算封装密度时采用了两种方法。第一种是单位面积电流密度,即POL稳压器的电路板上每cm3所实现的输出电流,单位为A/cm3。第二种则是传统的功率密 度,根据3.3VPOL稳压器最大输出功率来计算,单位是W/cm3。

  对于20A的数字POL稳压器来说,其电流密度比参考模拟设计高289%,功率密度则提高了307%。而40A的数字POL稳压器的两种密度值 分别提高了312%和330%。需要指出的另一点是,相对于模拟设计,20A的数字设计在电路板面积减少61%的同时,输出电流还额外提高了2A。而对于 40A的数字设计而言,输出电流增加了22A(122%),电路板面积却减小了28%。

  3. 元器件数量

  所参考的模拟POL稳压器总共采用了58个元器件,这里不包含连接器引脚,但PCB作为一个元件被包含在内。采用相同的计算规则,20A数字设 计所用的元器件为24枚,而40A数字设计的元器件则为41枚。如上所述,数字设计中元器件数量的减少是导致功率密度提高的根本原因。元器件数量的减少, 除了可以改善封装之外,在未来利用数字控制的设计中,还有望在降低成本和提高可靠性方面发挥重要的积极作用。

  4. 成本

  由于PMH8918L是一个产品单元,所以说模拟设计的成本结构非常清晰。而数字设计位于一个原型内且只采用部分元器件,例如数字控制芯片,这 类器件都是最近最新引进的,因而还没有一个完善的定价机制。进一步说,我们期望随着数字控制技术的普遍采用,一些专用的元器件价格将会下降。因此这里我们 不提供具体的成本分析。但由于数字技术可能实现更高的集成度以及更高水平的电气和封装性能,我们坚信数字方案很快就会为绝大多数用户提供非常高的价值。

  5. 可靠性

  对于原型数字设计目前还没有详细的可靠性计算。18A模拟设计所计算出来的MTBF为380万小时。在两种数字设计中采用了与模拟设计中相同的 元器件降额设计方法。在数字设计的某些方面,元器件数量的减少将会更好地补偿电流的增加。通常,数字设计中的高集成度和较少的元器件内部互联将预示着具有 更高的可靠性。

 

  本文小结

 

  通过本案例的研究,相对于模拟设计来说,在POL稳压器的数字控制功能方面可以得出以下几个结论:

  1. 数字控制稳压器的通用电气性能要等同于或者优于模拟设计;

  2. 对于同样的输出电流,数字设计的效率高于模拟设计。效率提高超过1%是可能的;

  3. 在封装密度方面数字设计具有明显的优点。这样,可以设计更小的BMPS,或者在标准的封装内可以提高可用功率;

  4. 与模拟POL稳压器相比,数字设计可以大大地提高电流和功率密度,提高幅度可以达到289%-330%;

  5. 随着40A数字设计的集成度的提高,散热将超过器件面积而成为约束封装的主要条件;

  6. 数字设计大大地减少了元器件数量,20A数字设计减少了58%,而40A数字设计则减少了29%;

  7. 虽然还无法提供详细的成本分析,与模拟BMPS相比,数字设计有望能为用户提供更突出的价值;

  8. 由于元器件数量减少并提高了集成度,在进行MTBF预测计算时,数字设计相对于模拟设计将具有更高的可靠性。

  总的来说,数字控制作为一项可行的技术,在无需OEM系统设计师增加额外设计工作量的条件下,能够为最终用户提供性能、成本、可靠性以及功率密度方面的改善。如果需要,还可以在不增加成本和封装密度的条件下,为BMPS增加一个系统电源管理接口。

关键字:数控技术  功率密度 编辑:冰封 引用地址:数字控制技术:改善功率密度及电源管理功能的高招

上一篇:单片开关电源的快速设计法
下一篇:全桥型IGBT脉冲激光电源原理与性能分析

推荐阅读最新更新时间:2023-10-18 15:22

为高功率密度而生,TI 全新一代电源产品登场
我们如何让下一代可穿戴产品尺寸更小、厚度更薄、以及重量更轻,同时延长电池使用寿命?电源电子产品如何实现更高的工厂自动化水平?如今数据中心每个服务器机架功率有 30 kW,如何管理更高的功率? 在电源性能上,我们的需求似乎永无止境。对电源设计者而言,如何在更小尺寸内实现更高的功率将变成主流的设计趋势,也正为了顺应这一趋势,TI 近日推出了 2 大系列产品。 电压转换器的蜕变 TI 副总裁兼降压开关电源产品业务部总经理 Mark Gary TI 副总裁兼降压开关电源产品业务部总经理 Mark Gary对比了TI 电压转换器产品的发展历程: 1989年: TI 产品尺寸是50mm×50mm,当时的频率
[电源管理]
为高<font color='red'>功率密度</font>而生,TI 全新一代电源产品登场
台达Amplon RT 系列实现更紧凑设计与更高功率密度
近日,全球提供电源管理与散热解决方案台达,宣布推出Amplon RT 系列 5-20kVA 在线式双变换不间断电源(UPS)系统新机种。承袭台达一贯对技术与质量的坚持,作为上一代Amplon RT系列5-11kVA机种的升级,Amplon RT 系列 5-20kVA UPS 新机种增加了15kVA和20kVA三相机型,拥有高功率密度比 ,尺寸低至2U,高效率更具弹性的电池配置方案以及完整的系统方案附件。主要应用于保护网络和通信系统,企业、政府、金融机房IT系统供电,作为医疗和工业精密仪器设备配套等。 Amplon RT 系列5-20kVA在线式双变换UPS,采用全额定功率因数设计,可为关键负载提供最大的带载能力支持。AC-AC
[电源管理]
台达Amplon RT 系列实现更紧凑设计与更高<font color='red'>功率密度</font>比
电动汽车充电速度太慢?原来是这个原因!
众所周知,如今阻碍纯电动汽车发展的最大瓶颈有两个,一个是电池的功率密度,另外一个就是充电速度了。前者影响一款电动车的制造成本和续航里程,而后者更是直接限制了纯电动汽车场景使用的便利性。但是为什么如今的电动车要充满电动辄就要一两个小时呢?一台电动车的充电速度到底受什么限制呢?今天我们就简单给大家讲讲这个问题。 电池的充电速度受什么限制? 在讨论充电速度的时候,电池本身的承受能力绝对是最无法绕过的一个因素。无论外围的充电设备有多牛、功率有多大、充电能力有多强,如果电池本身在能够接受的充电能力方面有短板,那么充电速度肯定就快不起来。加上电池容量又比较大的话,自然充电时间就长了。 如果你高中学过电化学方面的知识的话,就会了解电池充
[嵌入式]
电动汽车充电速度太慢?原来是这个原因!
Simotion D在制基础盖设备上的应用研究
引言 现时国内企业中使用的易拉盖设备大部分都是从国外引进,核心技术一直由欧美控制,而且不能拥有自己的技术图纸和参数,在软硬件维护上十分困难,需要依赖原设备厂家的技术支持,无论在时间响应上还是维护费用上都要付出不菲的代价。 如上所说,国内某制盖企业的基础盖harr冲床生产线,由于生产线已使用十多年,故障点非常多,维修费用十分昂贵,客户要求将其升级,以便延长使用寿命并方便维护。 项目的工艺 原工艺:片材由真空吸盘一张一张吸起,通过输送带输送到工作区域,由机械手抓取片材送入冲压模具下,冲头落下冲压片材完成一次冲压,等冲头抬起一定角度,两排模具中间的高压气嘴吹气,使基础盖飞入出盖盒,再由嵌入其内部的输送带送入下一个工位。同时机械手将片材送入
[嵌入式]
更高功率密度和更高效率,Vishay FRED Pt®超快恢复整流器问市
日前,Vishay Intertechnology, Inc. 宣布,推出采用eSMP®系列MicroSMP (DO-219AD) 封装的新型200 V Fred Pt®超快速恢复整流器,包括业内额定电流首度达到2 A的器件--- 1 A VS-1EQH02HM3和2 A VS-2EQH02HM3。1 A VS-1EQH02HM3和2 A VS-2EQH02HM3整流器外形尺寸为2.5 mm x 1.3 mm,高度仅为0.65 mm,可取代SMA封装整流器节省空间。此外,还有商用版1 A VS-1EQH02-M3和2 A VS-2EQH02-M3。 日前发布的器件采用体积更小的 MicroSMP 封装,典型额定电流与 SMA
[电源管理]
更高<font color='red'>功率密度</font>和更高效率,Vishay FRED Pt®超快恢复整流器问市
技术文章—功率密度与效率如何权衡
能量转换效率是一个重要的指标,各制造商摩拳擦掌希望在95%的基础上再有所提升。为了实现这一提升,开始逐渐采用越来越复杂的转换拓扑,如移相全桥(PSFB)和LLC变换器。而且二极管将逐渐被功耗更低的MOSFET所取代,宽带隙(WBG)器件更是以其惊人的开关速度被誉为未来的半导体业明珠。 然而,最终用户要放眼全局,更关心的是整个系统或流程的效率,即在履行环保义务的同时谋求利润最大化。他们明白,当考虑到整个寿命周期成本时,逐步减少能量转换过程中的小部分损失并不一定会带来总体成本或环境效益的大幅提升。另一方面,将更多能量转换设备集成到更小的封装中,即提高“功率密度”,可以更有效地利用工厂或数据中心的占地面积,并以现有的管理成本创造出
[工业控制]
技术文章—<font color='red'>功率密度</font>与效率如何权衡
Vicor公司的VIA BCM™ DC-DC前端模块提供高功率密度和效率
VIA BCM利用380 VDC母线工作,在一个9 mm薄型热适应模块中 以1.75 kW和97.5%的峰值效率提供隔离的48 V输出 Vicor公司(纳斯达克市场代码:VICR)今天推出其全新VIA BCM K=1/8 DC-DC母线转换器模块。新的VIA BCM采用380 VDC标称输入电压工作,提供隔离的SELV 48 V输出,以9 mm薄型热适应模块提供了新水平的功能集成,包括EMI滤波、瞬态保护和浪涌电流限制功能。 凭借VIA BCM,Vicor的MHz频率、软开关母线转换器技术实现了比 竞争 产品有更高密度和效率的DC-DC前端。VIA BCM可以通过并联提供多千瓦阵列,实现
[电源管理]
超级电容器在电动车上的应用
中心议题: 超级电容器基本原理 与传统电容器、电池的区别 解决方案: 超级电容器在刹车时再生能量回收 在启动和爬坡时快速提供大功率电流 现在,城市污染气体的排放中,汽车已占了70%以上,世界各国都在寻找汽车代用燃料。由于石油短缺日益严重人们都渐渐认识到开发新型汽车的重要性,即在使用石油和其它能源的同时尽量降低废气的排放。 超级电容器功率密度大,充放电时间短,大电流充放电特性好,寿命长,低温特性优于蓄电池,这些优异的性能使它在电动车上有很好的应用前景。 在城市市区运行的公交车,其运行线路在20公里以内,以超级电容为唯一能源的电动汽车,一次充电续驶里程可达20公里以上,在城市公交车将会有广阔的应用前景
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved