Stm32时钟分析

发布者:荣耀使者最新更新时间:2015-08-25 来源: eefocus关键字:Stm32  时钟分析 手机看文章 扫描二维码
随时随地手机看文章
该分析材料大部分来自opendev论坛,我所做的只不过是加上一些自己的分析和整理,由于个人能力有限,纰漏之处在所难免,欢迎指正。

Stm32时钟结构图如下,(http://www.openedv.com/posts/list/302.htm

https://www.eeworld.com.cn/uploadfile/2015/0825/20150825122034502.jpg

对上图的分析如下:

重要的时钟:
  PLLCLK,SYSCLK,HCKL,PCLK1,PCLK2 之间的关系要弄清楚;
      1、HSI:高速内部时钟信号 stm32单片机内带的时钟 (8M频率)    精度较差
      2、HSE:高速外部时钟信号 精度高来源(1)HSE外部晶体/陶瓷谐振器(晶振)  (2)HSE用户外部时钟        
      3、LSE:低速外部晶体 32.768kHz主要提供一个精确的时钟源一般作为RTC时钟使用
在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。
  ①、HSI是高速内部时钟,RC振荡器,频率为8MHz。
  ②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。
  ③、LSI是低速内部时钟,RC振荡器,频率为40kHz。
  ④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。
  ⑤、PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。
  其中40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。RTC的时钟源通过RTCSEL[1:0]来选择。
  STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。
  另外,STM32还可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。
  系统时钟SYSCLK,它是供STM32中绝大部分部件工作的时钟源。系统时钟可选择为PLL输出、HSI或者HSE。系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分频。其中AHB分频器输出的时钟送给5大模块使用:
  ①、送给AHB总线、内核、内存和DMA使用的HCLK时钟。
  ②、通过8分频后送给Cortex的系统定时器时钟。
  ③、直接送给Cortex的空闲运行时钟FCLK。
  ④、送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给定时器(Timer)2、3、4倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2、3、4使用。
  ⑤、送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给定时器(Timer)1倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器1使用。另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。
  在以上的时钟输出中,有很多是带使能控制的,例如AHB总线时钟、内核时钟、各种APB1外设、APB2外设等等。当需要使用某模块时,记得一定要先使能对应的时钟。
  需要注意的是定时器的倍频器,当APB的分频为1时,它的倍频值为1,否则它的倍频值就为2。
  连接在APB1(低速外设)上的设备有:电源接口、备份接口、CAN、USB、I2C1、I2C2、UART2、UART3、SPI2、窗口看门狗、Timer2、Timer3、Timer4。注意USB模块虽然需要一个单独的48MHz时钟信号,但它应该不是供USB模块工作的时钟,而只是提供给串行接口引擎(SIE)使用的时钟。USB模块工作的时钟应该是由APB1提供的。
  连接在APB2(高速外设)上的设备有:UART1、SPI1、Timer1、ADC1、ADC2、所有普通IO口(PA~PE)、第二功能IO口。
涉及的寄存器:
RCC 寄存器结构,RCC_TypeDeff,在文件“stm32f10x_map.h”中定义如下:
typedef struct 

vu32 CR;                  //HSI,HSE,CSS,PLL等的使能
vu32 CFGR;              //PLL等的时钟源选择以及分频系数设定
vu32 CIR;                // 清除/使能时钟就绪中断
vu32 APB2RSTR;      //APB2线上外设复位寄存器
vu32 APB1RSTR;      //APB1线上外设复位寄存器
vu32 AHBENR;         //DMA,SDIO等时钟使能
vu32 APB2ENR;       //APB2线上外设时钟使能
vu32 APB1ENR;      //APB1线上外设时钟使能
vu32 BDCR;           //备份域控制寄存器
vu32 CSR;            
} RCC_TypeDef;
可以对上上面的时钟框图和RCC寄存器来学习,对STM32的时钟系统有个大概的了解,然后对照我们的《STM32不完全手册》的系统时钟配置函数void Stm32_Clock_Init(u8 PLL)一同来学习。

 

 

具体配置过程:

第一步:

复位并配置向量表。

函数MYRCC_DeInit();

下面对该函数进行分析:

(1)       设置外设复位寄存器:RCC->APB1RSTR = 0x00000000

该寄存器中包含dac,电源复位,定时器等外设复位设置,某位为1表示对相应外设复位。开机启动时将该寄存器数据清空。

(2)       设置外设复位寄存器:RCC->APB2RSTR = 0x00000000

同第一步外设复位寄存器的设置。

解答:

RCC->APB1RSTR 0x00000000;//复位结束     
RCC->APB2RSTR 0x00000000;  
这里的“复位结束”具体是什么意思??我把它注释掉后发现也是可以运行的

1是复位.0当然是不复位了
不复位那就是复位结束了.

(3)       睡眠模式闪存和sram时钟使能,其他关闭。用于使用sram。 Sram相当于pc的内存。

STm32有三种启动模式:

1,ISP模式.这种模式就是STM32复位后就执行固化在内部的BOOTLOADER程序(固化的,我们无法读写.),然后等待串口数据,从而实现串口bootloader功能.
这种模式不会从用户存储区启动(除非用串口控制其从0X08000000启动),所以在更新了代码之后,需要设置为其他模式(FLASH模式). 
2,FLASH启动模式.这种模式直接从0X08000000启动,也就是我们自己编写的代码的启动方式了.正常情况都应该用这种. 
3,SRAM启动模式.这种模式我没有用过,是从0X20000000启动的,也就是说在sram模式开始之前,你要确保SRAM里面已经有代码了,否则就是死机.

 

RCC->AHBENR = 0x00000014

(4)       设置外设时钟使能寄存器:

RCC->APB1ENR = 0x00000000;

RCC->APB2ENR = 0x00000000; 将所有外设全部关闭

(5)       使能内部高速HSION。

RCC->CR |=0x00000001;

stm32的时钟启动过程。
启动过程是: 
1,首先使用内部时钟(这也是为什么你不接晶振也可以下载代码了)。
2,尝试开启外部时钟. 
3,如果开启成功,则使用外部时钟,否则使用内部。 
4,做其他事情。 
当然以上代码都需要你自己写代码实现,当然内部时钟是默认的时钟,你不开启也可以.

(6)          复位SW,HPRE,PPRE1,PPRE2,ADCPRE,MCO

RCC->CFGR &= 0xF8FF0000;

这步有什么意思呢,我的理解是。Cfgr寄存器主要用于对时钟分频的控制,见下图:

https://www.eeworld.com.cn/uploadfile/2015/0825/20150825122034504.jpg

 

通过该步的配置:

首先配置MCO无输出,MCO是什么呢?是指可以将stm32的内部时钟通过IO口引脚输出出去,如上图就可以看到,对cfgr的配置,可以有四种mco输出,分别是将pllclk两分频后输出,hsi(片内时钟)输出等。

其次:配置ADCPRE就是上图中AHB分频器线面的ADC

再次:配置ppre2也就是高速外部时钟APB2,这里设成不分频。高速外部时钟主要驱动一些高速外设,这个在APB2ENR时钟控制寄存器中有介绍

再次:配置PPRE1配置低速外部时钟分频APB1这里也全部设成不分频。

再次:配置HPRE。这几个位主要用来配置AHB这个寄存器的分频系数这里也设置成不分频。也就是说上图SYSCLK经AHB没有分频。[page]

最后:配置SW,以及SWS。表示启用HIS作为系统时钟。

到这一步,经过分析得知,RCC->CFGR &= 0xF8FF0000;主要是用来配置ahb等各个分频器的设置,以及将片内时钟作为系统内部时钟。

(6)       关闭HSEON,CSSON,PLLON

RCC->CR &= 0xFEF6FFFF;

通过分析CR寄存器可以看出,该寄存器主要涉及三个时钟PLL,CSS,HSE。

(7)       复位HSEBYP.

RCC->CR &= 0xFFFBFFFF;这一步有什么作用呢?查询数据手册57页可知,外部时钟源HSE有两种模式,HSEBYP设置为0时,是选择外部晶体作为外部时钟源这种时钟更加精准,当然也是和外部电路有关的。当然因为第(6)步已经设置了HSEON关闭了,所以这一步才可自由设置HSEBYP。

(8)       复位PLLSRC,PLLXTPRE,PLLMUL and USBPRE

RCC->CFGR &= 0xFF80FFFF;

注意:在这一部中可能会有这样的疑问:

RCC->CFGR &= 0xFF80FFFF;
PLLSRC=0 HSI振荡器时钟经2分频后作为PLL输入时钟
PLLXTPRE=0,HSE分频器作为PLL输入,HSE不分频
这样不冲突吗?

答案是:以最后配置为准,就是最后一次配置会改变前一次的配置,所以说以最后一次配置为准。

也就是说后文还有其他代码对其进行定义。那干嘛还要怎么重复配置呢?

有时候是有用的。比如你想让stm32超频一会,然后又恢复正常运行,这就有用了。

(9)       关闭所有中断

RCC->CIR = 0x00000000;

(10)   配置向量表

#ifndef VECT_TAB_RAM

 MY_NVIC_SetVectorTable(NVIC_VectTab_RAM,0x0);

#else

 MY_NVIC_SetVectorTable(NVIC_VextTab_FLASH,0x0);

#endif

 

下面对该函数分析:

//函数功能:设置向量表偏移地址

//NVIC_VectTab:基址

//Offset:偏移量

void MY_NVIC_SetVectorTable(u32 NVIC_VectTab, u32 Offset)  

   //检查参数合法性
 assert_param(IS_NVIC_VECTTAB(NVIC_VectTab));
 assert_param(IS_NVIC_OFFSET(Offset));    
 SCB->VTOR = NVIC_VectTab|(Offset & (u32)0x1FFFFF80);//设置NVIC的向量表偏移寄存器
 //用于标识向量表是在CODE区还是在RAM区
}
前面两行是用来检查参数合法性,这里不作分析。重点看第三行

配置这个向量表有什么用?相见cortexm3权威指南113页向量表的解释

这里

#define NVIC_VectTab_RAM             ((u32)0x20000000)

#define NVIC_VectTab_FLASH           ((u32)0x08000000)

Offset的值为0x0,为偏移地址,地址必须能被64 * 4 = 256整除,具体请看权威手册113页

 SCB->VTOR = NVIC_VectTab|(Offset & (u32)0x1FFFFF80);//设置NVIC的向量表偏移寄存器的疑问如下:

SCB->VTOR = NVIC_VectTab|(Offset & (u32)0x1FFFFF80);//设置NVIC的向量表偏移寄存器。
既然是设置NVIC的向量表偏移量,为什么还要和NVIC_VectTab相或呢。只设置OFFSET不就可以了吗,另外VTOR设置只有BIT【28:7】有作用啊,相或以后也放不下这么多位吧?

这个是基址。 
那个7~28的,你能定义一个28位的数据出来嘛?

VTOR设置只有BIT【28:7】,你把(u32)0x1FFFFF80二进制看看是不是【28:7】。
然后再看下面一段话:

 

   在<<权威指南>>第一百零四页,有这么一段话:
    NVIC 中有一个寄存器,称为“向量表偏移量寄存器”(在地址0xE000_ED08处),通过修改它的值就能定位向量表。但必须注意的是:向量表的起始地址是有要求的:必须先求出系统中共有多少个向量,再把这个数字向上增大到是2的整次幂,而起始地址必须对齐到后者的边界上。例如,如果一共有32个中断,则共有32+16(系统异常)=48个向量,向上增大到2的整次幂后值为64,因此地址
地址必须能被64*4=256整除,从而合法的起始地址可以是:0x0, 0x100, 0x200等。
    向量表偏移量寄存器,也就是SCB->VTOR.它的第29位,用来标识向量表是在CODE区还是RAM区,从而0X1,就是最高3位不去动,这好理解.  但是低位,根据上面这段话的理解,STM32自己有60个中断,加上CM3的16个,总共有76个中断,扩大到2的整次幂,那就是128,然后再乘以4,得到512,也就是0X200.根据这样计算,合法的偏移地址应该是0X0,0X200,0X400,0X600...因此,在此处应该&0X1FFF FE00.才对.
    以上是我的理解.实际上确是&0X1FFF FF80;这点,我也有疑问.

答案:cortex-m3权威指南上介绍 bit 28-7为向量表的起始地址。所以低7位没有用到,所以&0X80,为的就是将低七位清零。但这里写&0X1FFF FE00,也能达到清零的目的。至于地址必须是512的整数只要offset这个参数注意就可以了。

 

下面我们回到例说stm32这本书61页的Stm32_Clock_Init()函数:

经过上面配置完毕后,下面开始配置外部时钟。

Ministm32开发板目前的实都是采用高速外部时钟作为时钟源,在经过MYRCC_Deinit()先将外部时钟源关闭,然后在cfgr重新配置之后,下面就准备开启高速外部时钟。

(11)      RCC->CR |= 0x00010000;外部高速时钟使能HSEON,前面说过以最后一次设置为准,所以自打这一步开始HSE作为了外部时钟。

(12)  等待外部时钟是否就绪

While(!(RCC->CR>>17));    (其实这一步的作用和while(RCC->CR&(u32)(1<<17));是一样的,因为在MYRCC_Deinit()中的18位至31位全为0了,当然在论坛中http://www.openedv.com/posts/list/1943.htm第23楼也承认While(!(RCC->CR>>17)这样写有点轻率,23楼这样写道

对此,原子哥也说了写成(RCC-CR>>17)&0X01比较合适,但我感觉RCC-CR>>17是不准确的,比方说如果第十八位是1,那么右移17位后不管时钟是否就绪,表达式“RCC-CR>>17”的结果始终为真,这样while(!(RCC-CR>>17))不就没有意义了吗?所以写成(RCC-CR>>17)&0X01才是最准确的

)

(13)  配置APB1/2=DIV2和AHB = DIV1

RCC->CFGR = 0x00000400;

(14)      设置PLL分频

PLL -=2;

RCC->CFGR = PLL <<18;

设置PLL 9倍频

这里还涉及到了一个问题,如下

其实,这里今天林妹妹问了一个比较专业的问题,那就是PLL是一个u8的数据类型,为什么在这里可以右移18位呢?不是早超出了么?其实,我们看看汇编代码就明白了,汇编代码如下: 219: RCC->CFGR|=PLL<<18; //设置PLL值 2~16 0x08000618 4608 MOV r0,r1 0x0800061A 6840 LDR r0,[r0,#0x04] 0x0800061C EA404084 ORR r0,r0,r4,LSL #18 0x08000620 6048 STR r0,[r1,#0x04]可以看到,这个移位操作,是在R0和R1里面进行的,r0,r1均是32位的寄存器,所以,这里的移位操作并不会产生错误(结果是赋值给32位的寄存器:RCC->CFGR).

(15)      FLASH->ACR |= 0x32 //flash 2个延时周期。FLASH->ACR|=0x32是为了使频率匹配,

//具体见《STM32闪存编程》

(16)      打开PLLON

RCC->CR|=0x01000000;

(17)      等待PLL锁定

while(!((RCC->CR>>25)&0x01));

(18)      PLL作为系统时钟

RCC->CFGR |= 0x00000002;

(19)      等待PLL作为系统时钟设置成功

Unsigned char Temp = 0;

While(Temp!=0x02)

{

   Temp = RCC->CFGR>>2;

   Temp &= 0x03;

}

其实这段代码就是判断SWS,等待系统时钟成功转为PLL时钟。

 

结合上面的分析已经明了STM32时钟一个始终配置过程,主要流程图如下:

其实个人感觉不用想mini32中自带例程配置有一些没有必要,所以自己改动了一些,发现在跑马灯程序中也能运行,目前只在跑马灯程序中试验过:

 

第一步:

     RCC->APB1RSTR = 0x00000000;//复位结束                  

     RCC->APB2RSTR = 0x00000000;

第二步:

    RCC->AHBENR = 0x00000014;  //睡眠模式闪存和SRAM时钟使能.其他关闭.

第三步:关闭所有外设时钟

    RCC->APB2ENR = 0x00000000; //外设时钟关闭.                    

    RCC->APB1ENR = 0x00000000; 

为什么要这步因为在配置cfgr以及cr等寄存器时,一些外设时钟要关闭。

第四步:

  RCC->CR &= 0xFEF2FFFF;  //该补的主要作用是开启内部HSION,且关闭HSE,CSS,PLLON

第五步:设置分频寄存器,配置分频,使能PLLSRC ON

 [page]

RCC->CFGR=0X00000400; //APB1/2=DIV2;APB2=DIV1;AHB=DIV1;查询中文手册可知,

apb1最大为36MHZ所以这里要对其分频,因为经过这番设置PLLMUL输出后为72MHZ所以为,这里要让APB1/2=DIV2是36MHZ。

PLL-=2;//抵消2个单位

RCC->CFGR|=PLL<<18;   //设置PLL值 2~16 设置PLL为9倍频

RCC->CFGR|=1<<16;   //PLLSRC ON设置HSE为输入时钟,因为第cfgr的17位也为0,所以HSE输入到PLLSRC的就是8M

 

此时hse为8MHZ显然经过上面的9倍频,经分析可知输出到AHB的SYSCLK为72MHZ。因为前面设置AHB不分频,所以AHB输出也是72MHZ。apb1因为前面分频了所以输出后为36MHZ。apb2为72MHZ

 

第七步:

FLASH->ACR|=0x32;   //FLASH 2个延时周期

第八步:

     RCC->CIR = 0x00000000;     //关闭所有中断

第九步:

     //配置向量表                        

#ifdef  VECT_TAB_RAM

     MY_NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);

#else  

     MY_NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);   //这里用到的就是flash启动

#endif

第十步:

     RCC->CR|=0x00010000;  //外部高速时钟使能HSEON,注意使能hseon之前外部时钟不能直接或间接的为系统时钟,也就是说cfgr中的SW位先为0,因为在第五步已经设为0了,所以这里无需顾虑。

     while(!(RCC->CR>>17));//等待外部时钟就绪

第十一步:打开PLL,

     RCC->CR|=0x01000000;  //PLLON

     while(!(RCC->CR>>25));//等待PLL锁定

第十二步:

     RCC->CFGR|=0x00000002;//PLL作为系统时钟      

     while(temp!=0x02)     //等待PLL作为系统时钟设置成功

     {  

            temp=RCC->CFGR>>2;

            temp&=0x03;

     }

 

结合Stm32_Clock_Init()时钟配置过程,我总结时钟配置就是大致如下步骤:

关所有外设时钟,
(1)使能HSI并关闭HSE,PLL,CSS,配置分频寄存器,并且在crgr中将系统时钟设为HSI。
(2)关所有中断。
(3)配置向量表。
(4)使能HSE,CR中等待设置完毕。
(5)打开PLL,CR中等待PLL开启。
(6)在cfgr中sws位等待PLL成为系统时钟。


结合上述方式,我改写的代码如下:
void Stm32_Clock_Init111(u8 PLL)
{

 unsigned char temp=0;  
 RCC->APB1RSTR = 0x00000000;//复位结束    
 RCC->APB2RSTR = 0x00000000; 
   
 RCC->AHBENR = 0x00000014;  //睡眠模式闪存和SRAM时钟使能.其他关闭.   
 RCC->APB2ENR = 0x00000000; //外设时钟关闭.      
 RCC->APB1ENR = 0x00000000;   
 
 RCC->CR &= 0xFEF2FFFF;  //该步的主要作用是开启内部HSION,且关闭HSE,CSS,PLLON                  
 
 RCC->CFGR=0X00000400; //APB1=DIV2;APB2=DIV1;AHB=DIV1; HSE设置为不分频,CFGR的主要作用是配置分频,分频之前当然要把cr中HSE时钟全关闭只开启HSI时钟。当然还有一个重要的作用是,设置当前是谁作为系统时钟,就是SW位。


 PLL-=2;//抵消2个单位
 RCC->CFGR|=PLL<<18;   //设置PLL值 2~16
 RCC->CFGR|=1<<16;   //PLLSRC ON

 FLASH->ACR|=0x32;   //FLASH 2个延时周期
       
 RCC->CIR = 0x00000000;     //关闭所有中断
 //配置向量表      
#ifdef  VECT_TAB_RAM
 MY_NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);
#else   
 MY_NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);   //这里用到的就是flash启动
#endif
   
 RCC->CR|=0x00010000;  //外部高速时钟使能HSEON
 while(!(RCC->CR>>17));//等待外部时钟就绪
 RCC->CR|=0x01000000;  //PLLON
 while(!(RCC->CR>>25));//等待PLL锁定
 RCC->CFGR|=0x00000002;//PLL作为系统时钟  
 while(temp!=0x02)     //等待PLL作为系统时钟设置成功
   
  temp=RCC->CFGR>>2;
  temp&=0x03;
 }
     
}


关键字:Stm32  时钟分析 引用地址:Stm32时钟分析

上一篇:STM32三种低功耗模式研究二
下一篇:STM32三种低功耗模式研究一

推荐阅读最新更新时间:2024-03-16 14:30

【STM32CubeMX】10,STM32之FSMC 之TFTLCD,移植,显示变量
1,学了这章之后,主要掌握了怎么移植标准库的函数 2,对.c .h文件的#include文件的修改 3,在LCD中,最关键的是读写命令地址的书写 4,LCD的初始化可以看给的参考例程 5,变量的显示sprintf函数https://baike.baidu.com/item/sprintf/9703430?fr=aladdin http://www.openedv.com/posts/list/61386.htm 6, 在stm32 例子的 c语言 程序中看到这样一句 *(__IO uint16_t *) (((uint32_t)0x60020000) ) 7,fsm
[单片机]
【STM32CubeMX】10,<font color='red'>STM32</font>之FSMC 之TFTLCD,移植,显示变量
STM32 Boot模式设置方法
1、模式设置 Boot模式设实际指的就是选择启动的起始地址区域,在STM32F20x和STM32F21x中存在以下三种模式可供选择,分别为片内Flash、系统内存、片内SRAM: 2、BOOT Pin值确认 BOOT引脚值在系统复位的4个系统时钟周期后被锁存,同时BOOT1引脚实际与GPIO引脚共享一外部接口,在4个系统时钟周期后则会被释放可作为GPIO使用。 BOOT引脚值会在待机模式后被重新检测,在待机模式中BOOT引脚状态要保持正确 3、ST Embedded Bootloader 在System Memory中预置了bootloader用于对片内Flash进行IAP, 其使用如下接口: -USART1 -US
[单片机]
STM32开发笔记24:STM32L0低功耗设计
这几篇日志将详细记录,自己应用stm32进行低功耗设计的全过程。 使用芯片:STM32L053R8T6 运行模式: Range 1:电源电压限制在1.71-3.6V,CPU最大运行频率为32MHz。 Range 2:CPU最大运行频率为16MHz。 Range 3:CPU最大运行频率4.2MHz 低功耗模式: Sleep mode(睡眠模式)、Low-power run mode(低功耗运行模式)、Low-power sleep mode(低功耗睡眠模式)、Stop mode with RTC(带有RTC的停止模式)、Stop mode without R
[单片机]
<font color='red'>STM32</font>开发笔记24:STM32L0低功耗设计
基于STM32的术后引流负压吸引器
由于很多病人手术后脏器创口没有得到有效的愈合,此时会在腹腔内积累各种液体。最为常见的就是在临床中,为了保证肠道患者在术后能尽快康复,就需要将来自胃的低PH值的消化液借助引流设备排出体外。目前国内外市场上通常使用一次性负压吸引袋或机械式吸引器将体液引流至体外。但是这种方法产生的负压并不稳定,吸引的压强可能会有较大的变化,导致负压吸引的效果不理想。同时一次性负压吸引袋的后期垃圾处理较为复杂,如果处理不当,易造成较大污染。最重要的是,传统方式气密性不理想,容易造成倒灌而造成患者的二次感染。 相比之下,嵌入式系统通过检测体内腔压的方式控制引流,能动态控制负压大小,也能实时监控病人的体液的各种参数,稳定性好。同时具有自动清洗的功能,操作便捷
[单片机]
基于<font color='red'>STM32</font>的术后引流负压吸引器
STM32基础设计(4)---DMA通信
前面几篇文章介绍了STM32 F103C8的 GPIO口操作,串口的操作,中断的操作,今天这篇文章简单介绍STM32的DMA操作。 本文通过一个小的设计来进行讲解,将STM32内部存储的一个数组中的数据,通过DMA操作复制到第二个数组里,并用USART1串口将第二个数组中的数据输出到电脑端,进行检查,看是否复制成功。 首先总结全文,,使用STM32进行DMA操作的主要过程如下: 1,初始化GPIO 2,初始化串口 3,初始化DMA 4,编写主函数 下面介绍详细步骤: (步骤1,2前几篇博客有详细讲,请读者翻阅。) 1,初始化GPIO void IO_Init() { GPIO_InitType
[单片机]
STM32位带操作实现GPIO输入输出
前言 位操作就是可以单独的对一个比特位读和写,这个在 51 单片机中非常常见。51 单片机中通过关键字 sbit 来实现位定义,STM32 没有这样的关键字,而是通过访问位带别名区来实现。 提示:以下是本篇文章正文内容 一、示意图 在 STM32 中,有两个地方实现了位带,一个是 SRAM 区的最低 1MB 空间,令一个是外设区最低 1MB 空间。这两个 1MB 的空间除了可以像正常的 RAM 一样操作外,他们还有自己的位带别名区,位带别名区把这 1MB 的空间的每一个位膨胀成一个 32 位的字,当访问位带别名区的这些字时,就可以达到访问位带区某个比特位的目的。 二、位带区 1.外设位带区 外设外带区的地址为:0X
[单片机]
<font color='red'>STM32</font>位带操作实现GPIO输入输出
如何使用MDK编译器让STM32程序HEX文件中加入固件版本信息
本文介绍一个小技巧: 使用MDK编译器,让STM32程序HEX文件中加入固件版本信息。 代码 代码如下: //------------------------------------------------------------------------------#include 《absacc.h》 //------------------------------------------------------------------------------#define VERINFO_ADDR_BASE (0x8009F00) // 版本信息在FLASH中的存放地址const char Hardware_Ver[] _
[单片机]
如何使用MDK编译器让<font color='red'>STM32</font>程序HEX文件中加入固件版本信息
STM32-SPI之OLED
OLED作为一种新型的显示设备,由于其优秀的性能,并且随着产量的提高价格也在不断的下降。受到了现在很多显示设备产品的青睐。高清晰,高对比的都使人们对它的使用越来越多了。对于OLED它的驱动方式有很多种,SPI、IIC、8080并口等方式,不同的方式有不同的优点。本篇文章采用的STM32自身的SPI总线的控制方式,还可以通过软件的方式来模拟SPI,难度都不大。 首先来看一下关于STM32的SPI的寄存器和函数,至于什么是SPI就没有必要解释了。 由于STM32的固件库手册版本的原因 我用的手册可能没有全部包括SPI的函数,详细的可以看英文原版的手册。 SPI的引脚映射关系 SPI的GPIO模式的设置 至于OLED大家可以参
[单片机]
热门资源推荐
热门放大器推荐
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
  • 学习ARM开发(16)
    ARM有很多东西要学习,那么中断,就肯定是需要学习的东西。自从CPU引入中断以来,才真正地进入多任务系统工作,并且大大提高了工作效率。采 ...
  • 学习ARM开发(17)
    因为嵌入式系统里全部要使用中断的,那么我的S3C44B0怎么样中断流程呢?那我就需要了解整个流程了。要深入了解,最好的方法,就是去写程序 ...
  • 学习ARM开发(18)
    上一次已经了解ARM的中断处理过程,并且可以设置中断函数,那么它这样就可以工作了吗?答案是否定的。因为S3C44B0还有好几个寄存器是控制中 ...
  • 嵌入式系统调试仿真工具
    嵌入式硬件系统设计出来后就要进行调试,不管是硬件调试还是软件调试或者程序固化,都需要用到调试仿真工具。 随着处理器新品种、新 ...
  • 最近困扰在心中的一个小疑问终于解惑了~~
    最近在驱动方面一直在概念上不能很好的理解 有时候结合别人写的一点usb的例子能有点感觉,但是因为arm体系里面没有像单片机那样直接讲解引脚 ...
  • 学习ARM开发(1)
  • 学习ARM开发(2)
  • 学习ARM开发(4)
  • 学习ARM开发(6)
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved