ARM工作模式和大端小端存储模式

发布者:mb5362443最新更新时间:2018-10-11 来源: eefocus关键字:ARM  工作模式  大端小端  存储模式 手机看文章 扫描二维码
随时随地手机看文章

一、存储器格式(字对齐):

Arm体系结构将存储器看做是从零地址开始的字节的线性组合。从零字节到三字节放置第一个存储的字(32位)数据,从第四个字节到第七个字节放置第二个存储的字数据,一次排列。作为32位的微处理器,arm体系结构所支持的最大寻址空间为4GB。

 

存储器格式

        1、大端格式:高字节在低地址,低字节在高地址;

        2、小端格式:高字节在高地址,低字节在低地址;

指令长度:

Arm微处理器的指令长度是32位的,也可以为16位(thumb状态下)。Arm微处理器中支持字节(8位),半字(16位),字(32位)三种数据类型,其中,字需要4字节对齐,半字需要2字节对齐。

注:所谓的指令长度是一条完整的指令的长度,而不是单纯的mov这3个字母长度

二、ARM体系的CPU有两种工作状态

   1、ARM状态:处理器执行32位的字对齐的ARM指令;

         2、Thumb状态:处理器执行16位的、半字对齐的Thumb指令;

在程序运行的过程中,可以在两种状态之间进行相应的转换。处理器工作状态的转变并不影响处理器的工作模式和相应寄存器中的内容。

CPU上电处于ARM状态

 

三、ARM体系的CPU有以下7种工作模式:

        1、用户模式(Usr):用于正常执行程序;

        2、快速中断模式(FIQ):用于高速数据传输;

        3、外部中断模式(IRQ):用于通常的中断处理;

        4、管理模式(svc):操作系统使用的保护模式;

        5、数据访问终止模式(abt):当数据或指令预取终止时进入该模式,可用于虚拟存储以及存储保护;

        6、系统模式(sys):运行具有特权的操作系统任务;

        7、未定义指令中止模式(und):当未定义的指令执行时进入该模式,可用于支持硬件;

 

Arm的工作模式切换有两种方法:

被动切换:在arm运行的时候产生一些异常或者中断来自动进行模式切换

主动切换:通过软件改变,即软件设置寄存器来经行arm的模式切换,应为arm的工作模式都是可以通过相应寄存器的赋值来切换的。

Tips:当处理器运行在用户模式下,某些被保护的系统资源是不能被访问的。

 

除用户模式外,其余6种工作模式都属于特权模式;

特权模式中除了系统模式以外的其余5种模式称为异常模式;

大多数程序运行于用户模式;

进入特权模式是为了处理中断、异常、或者访问被保护的系统资源;

四、寄存器

ARM有31个通用的32位寄存器,6个程序状态寄存器,共分为7组,有些寄存器是所有工作模式共用的,还有一些寄存器专属于每一种工作模式;

R13——栈指针寄存器,用于保存堆栈指针;

R14——程序连接寄存器,当执行BL子程序调用指令时,R14中得到R15的备份,而当发生中断或异常时,R14保存R15的返回值;

R15——程序计数器;

快速中断模式有7个备份寄存器R8—R14,这使得进入快速中断模式执行很大部分程序时,甚至不需要保存任何寄存器;

其它特权模式都含有两个独立的寄存器副本R13、R14,这样可以令每个模式都拥有自己的堆栈指针和连接寄存器;

 

五、当前程序状态寄存器(CPSR)

CPSR中各位意义如下:

T位:1——CPU处于Thumb状态, 0——CPU处于ARM状态;

I、F(中断禁止位): 1——禁止中断, 0——中断使能;

工作模式位:可以改变这些位,进行模式切换;

六、程序状态保存寄存器(SPSR)

当切换进入某一个特权模式时,SPSR保存前一个工作模式的CPSR值,这样,当返回前一个工作模式时,可以将SPSR的值恢复到CPSR中;

七、模式切换

当异常发生,CPU进入相应的异常模式时,以下工作是由CPU自动完成的:

1、在异常模式的R14中保存前一工作模式的下一条即将执行的指令地址;

2、将CPSR的值复制到异常模式的SPSR中;

3、将CPSR的工作模式设为该异常模式对应的工作模式;

4、令PC值等于这个异常模式在异常向量表中的地址,即跳转去执行异常向量表中的相应指令;

从异常工作模式退回到之前的工作模式时,需要由软件来完成以下工作:

1、将异常模式的R14减去一个适当的值(4或8)后赋给PC寄存器;

2、将异常模式SPSR的值赋给CPSR;


====================================================================================

转载:大端与小端存储模式的详解

存储模式:
小端:较高的有效字节存储在较高的存储器地址,较低的有效字节存储在较低的存储器地址。
大端:较高的有效字节存储在较低的存储器地址,较低的有效字节存储在较高的存储器地址。

STM32 属于小端模式,简单地说:比如:temp=0X12345678;假设temp的地址为:0X4000 0000
那么,在内存里面,其存储就变成了:
|       地址   |    HEX   |
|0X4000 0000    |78 56 43 12|

更为简单一点:
低地址---------->高地址【大端模式】:
0X12|0X34|0X56|0X78|
低地址---------->高地址【小端模式】:
0X78|0X56|0X34|0X12|

大端与小端的优势
二者无所谓优势,无所谓劣势,各自优势便是对方劣势
大端模式:符号位的判定固定为第一个字节,容易判断正负。
小端模式:强制转换数据不需要调整字节内容,1、2、4字节的存储方式一样

数组在大端小端情况下的存储:
以unsigned int value = 0x12345678为例,
分别看看在两种字节序下其存储情况,
我们可以用unsigned char buf[4]来表示value:
Big-Endian: 低地址存放高位,如下:
高地址
       ---------------
       buf[3] (0x78) -- 低位
       buf[2] (0x56)
       buf[1] (0x34)
       buf[0] (0x12) -- 高位
       ---------------
低地址
Little-Endian: 低地址存放低位,如下:
高地址
       ---------------
       buf[3] (0x12) -- 高位
       buf[2] (0x34)
       buf[1] (0x56)
       buf[0] (0x78) -- 低位
       --------------
低地址

为何会出现大小端之分:
这是因为在计算机系统中,我们是以字节为单位的,
每个地址单元都对应着一个字节,一个字节为8bit。
但是在C语言中除了8bit的char之外,还有16bit的short型,32bit的long型(要看具体的编译器),
另外,对于位数大于8位的处理器,例如16位或者32位的处理器,
由于寄存器宽度大于一个字节,那么必然存在着一个如果将多个字节安排的问题。
因此就导致了大端存储模式和小端存储模式。
例如一个16bit的short型x,在内存中的地址为0x0010,x的值为0x1122,
那么0x11为高字节,0x22为低字节。对于大端模式,就将0x11放在低地址中,即0x0010中,
0x22放在高地址中,即0x0011中。小端模式,刚好相反。
我们常用的X86结构是小端模式,而KEIL C51则为大端模式。
很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

字节序:【一般操作系统都是小端,而通讯协议是大端的】
常见CPU字节序:
Big Endian : PowerPC、IBM、Sun
Little Endian : x86、DEC
ARM既可以工作在大端模式,也可以工作在小端模式
常见文件的字节序
Adobe PS – Big Endian
BMP – Little Endian
DXF(AutoCAD) – Variable
GIF – Little Endian
JPEG – Big Endian
MacPaint – Big Endian
RTF – Little Endian
另外,Java和所有的网络通讯协议都是使用Big-Endian的编码


对于CPU是大端还是小段,可使用代码来进行测试:
//CPU大小端
//0,小端模式;1,大端模式.
static u8 cpu_endian;
//获取CPU大小端模式,结果保存在cpu_endian里面
void find_cpu_endian(void)
{
      int x=1;
     if(*(char*)&x==1)cpu_endian=0; //小端模式
      elsecpu_endian=1;    //大端模式 
}
以上测试,在STM32上,你会得到cpu_endian=0,也就是小端模式.


关键字:ARM  工作模式  大端小端  存储模式 引用地址:ARM工作模式和大端小端存储模式

上一篇:OK6410裸机之中断处理过程
下一篇:OK6410裸机之异常处理

推荐阅读最新更新时间:2024-03-16 16:15

基于ARM9的嵌入式网关的研究
   摘 要: 介绍了一种基于ARM9的嵌入式以太网的设计方案。基于ARM内核微处理器S3C2410的功能特点及其外扩组成部分,分析了以太网控制器芯片RTL8019AS的性能以及与S3C2410的接口。在软件设计上,分析了BootLoader的作用,介绍了Linux的移植,并给出了通信程序的流程图,实现了嵌入式以太网的数据传输。    引 言   无所不在的网络给网络接入设备带来了巨大的发展机遇。而随着网络接入市场的迅速增长,嵌入式网络接入开始成为嵌入式系统技术中最令人关注的一个领域。在嵌入式网络技术的推动下将会形成这样一个局面:在网络上传输的信息中,将有70%的信息来自嵌入式系统,也许将有数以亿计的汽车、通信设备、家用电气以
[嵌入式]
ARM中断处理的安全性与高效性研究
引 言 在嵌入式系统中常用的RISC处理器是ARM核,它具有体积小、功耗低、成本低、性价比高的特点。然而,不管是哪种型号的ARM处理器,也无论该嵌入式系统中是否有操作系统,中断处理,特别是IRQ中断,始终是必须的,而中断处理的核心问题是上下文的保存。能否安全而又高效地保存上下文,将影响一个嵌入式系统的性能与稳定。笔者对ARM处理器的普通中断处理、任务切换中断处理、可重人中断处理和基于优先级的可重人性中断处理的上下文保存技术进行分析与总结。为保证理论的正确性,核心的程序代码都经过了实验的检测。 1 系统中断处理简介 ARM处理器的中断主要有两种:IRQ普通中断和FIQ快速中断。快速中断本质上与普通中断没有太大的差别,它们在处
[单片机]
<font color='red'>ARM</font>中断处理的安全性与高效性研究
飞思卡尔Kinetis E系列MCU又添新成员
2014年3月18日,中国,上海讯-飞思卡尔半导体(纽约证劵交易所: FSL)为其Kinetis E系列产品组合添加新成员,推出了三款全新的产品:运行频率高达40 MHz的Kinetis KE02 MCU,以及运行频率高达48 MHz 的KE04 MCU和KE06 MCU,进一步充实了本身已经很坚固耐用的5V MCU(基于ARM® Cortex®-M0+架构)产品组合。Kinetis E系列MCU的这三个新成员可抗电磁噪声,针对传统上采用8位和16位MCU的系统(如白色家电和工业应用),此外,它们还具有高能效和最佳的代码密度。 Kinetis E系列的新产品适用于多种应用,如洗衣机、烘干机、洗碗机、冰箱、空调、家庭和楼宇
[单片机]
基于ARM Cortex-M3的嵌入式网络播放系统
引言 鉴于原来RS232、RS485的串口设备已不再适应信息化的步伐。从串口到网口的转化,从电平级别的串口通信到以太网甚至Internet方式的网络化级别通信已是必然趋势。设备联网管理具有灵活性强、可远程控制、接口标准等优点。给嵌入式设备增加网口连接的常用方法是在硬件电路上增加以太网控制芯片和接口,但是,这些芯片通常都有100个以上的管脚,且需要对芯片的硬件结构和网络通信协议有深刻了解,或者自行设计TCP/IP协议栈和网络控制端,技术门槛较高。而对于对网络通信协议不甚了解,又想要给嵌入式设备增加网络接口,同时还不想改变原有硬件结构的用户来说,使用一款不需要了解网络接口的相关知识,便可使网口和串口通信相互转换的产品,无疑是一个较好方
[单片机]
基于<font color='red'>ARM</font> Cortex-M3的嵌入式网络播放系统
消息称 Arm 美国 IPO 正追求超过 545 亿美元的估值
9 月 11 日消息,日本软银集团旗下的芯片设计公司 Arm 上周公布了其 IPO 定价,计划以每股 47 至 51 美元的价格发行 9550 万股美国存托股票。这将是今年美国最大的此类交易。 据路透社,Arm 将获得大量投资者支持,以达到其首次公开募股(IPO)指示性区间的最高估值 ——545 亿美元(IT之家备注:当前约 4005.75 亿元人民币)。 消息人士称,鉴于 IPO 超额认购,Arm 正在讨论提高价格区间(47- 51 美元 / 股)的可能,并试图超过 545 亿美元的估值。 另外,消息人士补充称,Arm 还考虑维持目前的定价区间不变,并使得 IPO 定价定在当前区间的上限或更高,这也将致使最终产生高于 545
[半导体设计/制造]
消息称 <font color='red'>Arm</font> 美国 IPO 正追求超过 545 亿美元的估值
ARM·汇编伪指令
在ARM汇编程序中,有如下几种伪指令 *符号定义伪指令 *数据定义伪指令 *汇编控制伪指令 *信息报告伪指令 *宏指令以及其他伪指令 【符号定义伪指令】 定义局部变量LCLA,LCLL,LCLS 定义全局变量GBLA,GBLL,GBLS 对变量赋值SETA,SETL,SETS 【数据定义伪指令】 DCB DCW/DCWU DCD/DCDU DCQ/DCDU DCFS/DCFSU DCFD/DCFDU SPACE FIELD MAP *DCB 表达式 用于分配一片连续的字节 *DCW/DCWU 表达式 用于分配一片连续的半字 *DCD/DCDU 表达式 用于分配一
[单片机]
基于ARM的手持终端测试仪中的两种供电方式设计
1 引言 在多功能智能仪器仪表中,在不同的工作现场,有时需要不同的供电方式。目前来说,在电源的研究方面,冗余电源和多种供电方式是现在的研究热点。冗余技术已经比较成熟,应用也比较广泛,现在很多仪器仪表都是基于冗余电源设计的。多种供电方式应用的也比较多,但是把多种供电方式集成于同一电子产品中的还不多。本文实现了两种供电方式的设计,并使其应用于多功能手持测试终端,有效降低产品的成本,并且为设备维护带来了方便。 2 两种供电方式的设计 在电子产品的供电系统中,比较普遍的是基于锂电池供电,比较新颖的是总线供电系统。本设计集成了总线供电和锂电池供电两种方式,并对两种供电方式进行了特殊处理,避免了其中一套供电时对另一套电源造成的影响
[单片机]
基于<font color='red'>ARM</font>的手持终端测试仪中的两种供电方式设计
基于ARM芯片ADμC7022和MMA7260Q加速度传感器的电子笔设计
  本方案采用飞思卡尔半导体的MMA7260Q三轴低量级加速度传感器实现了笔触的空间定位。无线USB器件为电子笔提供了即插即用的连接。本电子笔使用Cypress的2.4GHz射频SoC CYRF6934作为无线USB网络收发器件,只要在PC端将Cypress的Encore2无线USB网桥连接到PC机的USB口,电子笔即可向PC机进行单向的数据传输。   1 硬件规划   在本设计中,使用MMA7260Q测量电子笔X、Y、Z三个轴方向上的加速度,使得软件以此实时计算笔尖的位置,进而生成笔迹。   微控制器ADμC7022采集到加速度传感器输出的信号后,使用片上ADC完成电压信号到加速度数据的转换并进行信号的与处理,最后通
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved