有了上一节《Exynos4412时钟体系分析》的基础,这一节我们来做几个和时钟有关的实验。
其实,Exynos 4412的 IROM代码已经设置了PLL,我们可以通过串口把IROM设置的PLL寄存器值打印出来,这些值打印出来是这样的(摘自韦东山老师的《嵌入式Linux系统开发完全手册_基于4412__上册》):
CLK_SRC_CPU = 0x01000001
CLK_DIV_DMC0 = 0x00111713
CLK_DIV_DMC1 = 0x01011171
CLK_SRC_TOP0 = 0x01110000
CLK_SRC_TOP1 = 0x00001000
CLK_DIV_TOP = 0x00015470
CLK_SRC_LEFTBUS = 0x00000001
CLK_DIV_LEFTBUS = 0x00000013
CLK_SRC_RIGHTBUS = 0x00000001
CLK_DIV_RIGHTBUS = 0x00000013
APLL_LOCK = 0x00000960
MPLL_LOCK = 0x00000000
EPLL_LOCK = 0x00000FFF
VPLL_LOCK = 0x00000FFF
CLK_DIV_CPU0 = 0x00773730
CLK_DIV_CPU1 = 0x00000077
APLL_CON1 = 0x00003800
APLL_CON0 = 0xA0640301
MPLL_CON1 = 0x00003800
MPLL_CON0 = 0xA0640301
EPLL_CON2 = 0x00000080
EPLL_CON1 = 0x66010000
EPLL_CON0 = 0x00600302
VPLL_CON2 = 0x00000080
VPLL_CON1 = 0x66016000
VPLL_CON0 = 0x006F0302
CLK_SRC_CPU = 0x01000001
CLK_SRC_DMC = 0x00111000
CLK_SRC_TOP0 = 0x01110000
CLK_SRC_TOP1 = 0x00001000
现在来计算 ARMCLK的时钟频率:
由上一节《Exynos4412时钟体系分析》的介绍我们知道,ARMCLK 有如下计算公式:
如下图所示:
由上边打印的寄存器CLK_SRC_CPU 的值为:
十六进制:0x01000001
二进制:0000 0001 0000 0000 0000 0000 0000 0001
① BIT[0] 控制第1个MUX (即 MUXAPLL) ,该位值为1.
② BIT[16]控制 第2个 MUX( 即MUXCORE) ,该位值为0.
所以由此看出ARMCLK时钟走的是如下的路线:
所以:ARMCLK = MUXCORE的输出 / DIVCORE / DIVCORE2
ARMCLK = MDIV x FIN / (PDIV x 2 ^ SDIV) / (CORE_RATIO + 1) / (CORE2_RATIO + 1)
= 0x64 x 24MHz / (3 x 2 ^ 1) / (0 + 1) / (0 + 1)
= 400 MHz
本次实验涉及3个小实验:
① 4.system_clock_disable_apll:不使用 APLL,让CPU运行于 24MHz 频率,观察 LED 闪烁是否变慢
② 5.system_clock_apll:重新设置APLL,让 CPU 运行于1.4GHz频率,观察 LED 闪烁是否变快
③ 6.system_clock_plls:参考厂家提供的u-boot代码,设置所有PLL供后续章节使用
第一个小实验
实现的目标:不使用 APLL,让CPU运行于 24MHz 频率,观察 LED 闪烁是否变慢
一、程序说明
我们在前一个实验,《Tiny4412之C语言实现流水灯》的基础上修改。
start.S大部分相同,只是增加一条函数调用语句:
bl system_clock_init // 调用时钟初始化函数
如下图所示:
启动文件
链接脚本system_clock.lds的内容和上一个实验key.lds完全相同,只把名字改了改;Makefile的内容也大部分一样,也只是改了改里边文件的名字,led.c文件和LED实验时完全相同,新增加了文件system_clock.c,代码如下:
// CMU_CPU
#define CLK_SRC_CPU (*(volatile unsigned int *)0x10044200)
#define CLK_DIV_CPU0 (*(volatile unsigned int *)0x10044500)
#define CLK_DIV_CPU1 (*(volatile unsigned int *)0x10044504)
// CMU_DMC
#define CLK_SRC_DMC (*(volatile unsigned int *)0x10040200)
#define CLK_DIV_DMC0 (*(volatile unsigned int *)0x10040500)
#define CLK_DIV_DMC1 (*(volatile unsigned int *)0x10040504)
// CMU_TOP
#define CLK_SRC_TOP0 (*(volatile unsigned int *)0x1003C210)
#define CLK_SRC_TOP1 (*(volatile unsigned int *)0x1003C214)
#define CLK_DIV_TOP (*(volatile unsigned int *)0x1003C510)
// CMU_LEFTBUS
#define CLK_SRC_LEFTBUS (*(volatile unsigned int *)0x10034200)
#define CLK_DIV_LEFTBUS (*(volatile unsigned int *)0x10034500)
// CMU_RIGHTBUS
#define CLK_SRC_RIGHTBUS (*(volatile unsigned int *)0x10038200)
#define CLK_DIV_RIGHTBUS (*(volatile unsigned int *)0x10038500)
// locktime
#define APLL_LOCK (*(volatile unsigned int *)0x10044000)
#define MPLL_LOCK (*(volatile unsigned int *)0x10044008)
#define EPLL_LOCK (*(volatile unsigned int *)0x1003C010)
#define VPLL_LOCK (*(volatile unsigned int *)0x1003C020)
// APLL
#define APLL_CON1 (*(volatile unsigned int *)0x10044104)
#define APLL_CON0 (*(volatile unsigned int *)0x10044100)
// MPLL
#define MPLL_CON0 (*(volatile unsigned int *)0x10040108)
#define MPLL_CON1 (*(volatile unsigned int *)0x1004010c)
// EPLL
#define EPLL_CON2 (*(volatile unsigned int *)0x1003C118)
#define EPLL_CON1 (*(volatile unsigned int *)0x1003C114)
#define EPLL_CON0 (*(volatile unsigned int *)0x1003C110)
// VPLL
#define VPLL_CON0 (*(volatile unsigned int *)0x1003C120)
#define VPLL_CON1 (*(volatile unsigned int *)0x1003C124)
#define VPLL_CON2 (*(volatile unsigned int *)0x1003C128)
//函数名:
//system_clock_init
//功能: 初始化4412的系统时钟
void system_clock_init(void)
{
// IROM或BL1设置了APLL,
//本程序设置不启动APLL,
//而是使在晶振时钟, 以体验一下LED闪灯变慢
CLK_SRC_CPU = 0x0;
}
没什么可说的,很简单,前部分是后期会用到的一些寄存器地址的定义,主要的是下边system_clock_init这个函数,在这个函数中将CLK_SRC_CPU寄存器的值设为0,这样ARMCLK的频率将走下面这条路径,设置为24MHZ:
二、编译、烧写实验
按照前几节介绍的方法,将程序上传到服务器编译,并烧写到SD卡上,给开发板上电,可以明显感觉到LED闪烁的频率大大降低,说明我们设置的时钟起作用了,这里就不上图了(上了图大家也看不出来)。
第二个小实验
实现的目标:重新设置APLL,让 CPU 运行于1.4GHz频率,观察 LED 闪烁是否变快
一、程序说明
文件同第一个小实验,只是在它的基础上对system_clock.c文件中的system_clock_init函数进行修改:
//函数名: system_clock_init
//功 能: 初始化4412的系统时钟
//最终结果: APLL=1.4GHz
void system_clock_init(void)
{
// 1. 在设置APLL之前, 先设置时钟源为晶振
CLK_SRC_CPU = 0x0;
// 2. 设置APLL
// 2.1 设置锁定时间: APLL_CON0中PDIV=3, 所以APLL_LOCK = 270x3
APLL_LOCK = 270 * 3;
// 2.2 设置分频参数
// CORE2_RATIO = 0;
// APLL_RATIO = 2;
// PCLK_DBG_RATIO = 1;
// ATB_RATIO = 6;
// PERIPH_RATIO = 7;
// COREM1_RATIO = 7;
// COREM0_RATIO = 3;
// CORE_RATIO = 0;
CLK_DIV_CPU0 = ((0<<28) | (2<<24) | (1<<20) | (6<<16) | (7<<12) | (7<<8) | (3<<4) | 0);
// CORES_RATIO = 5;
// HPM_RATIO = 0;
// COPY_RATIO = 6;
CLK_DIV_CPU1 = ((5 << 8) |(0 << 4) | (6));
// 2.3 设置控制参数并使能PLL
// 默认值
APLL_CON1 = 0x00803800;
// 设置APLL的M,P,S值, APLL输出 = 0xAF x 24MHz / (3 x 2 ^ 0) = 1.4GHz
// 使能APLL
APLL_CON0 = (1<<31 | 0xAF<<16 | 3<<8 | 0x0);
// 3. 设置MUX, 使用APLL的输出
CLK_SRC_CPU = 0x01000001;
}
注释的已经很清楚了,需要注意的就是:上电之后 IROM设置了APLL ,CPU工作于APLL提供的时钟;当我们要改变 APLL时,要先使得CPU工作于另一个时钟源,即晶振。设置完APLL后,再让CPU重新工作于APLL提供的时钟。
二、编译、烧写实验
按照前几节介绍的方法,将程序上传到服务器编译,并烧写到SD卡上,给开发板上电,可以明显感觉到LED闪烁的频率大大提高(比《Tiny4412之C语言实现流水灯》时闪烁的还要快,因为当时CPU运行在400MHZ,现在运行在1.4GHZ),说明我们设置的时钟起作用了,这里就不上图了(上了图大家也看不出来)。
第三个小实验
实现的目标:参考厂家提供的u-boot代码,设置所有PLL供后续章节使用
一、程序说明
文件同第一个小实验,只是在它的基础上对system_clock.c文件中的system_clock_init函数进行修改:
// 函数名:
// system_clock_init
// 功能:
// 初始化4412的系统时钟
// 最终结果:
// A=1400000000, M=800000000, E=96000000 V=350000000
// ARMCLK=1500000000, DMC=400000000, ACLK200=160000000
// ACLK100=100000000, ACLK160=160000000, ACLK133=133333333
void system_clock_init(void)
{
// 1.设置CMU_CPU相关
CLK_SRC_CPU = 0x0; // 设置CMU_CPU部分中所有的MUX的源
// 2.设置CMU_DMC相关
//
CORE_TIMERS_RATIO = 0x0;
COPY2_RATIO = 0x0;
DMCP_RATIO = 0x1;
DMCD_RATIO = 0x1;
DMC_RATIO = 0x1;
DPHY_RATIO = 0x1;
ACP_PCLK_RATIO = 0x1;
ACP_RATIO = 0x3;
CLK_DIV_DMC0 = ((0x0 << 28) | (0x0 << 24) | (0x1 << 20) | (0x1 << 16) | (0x1 << 12) | (0x1 << 8) | (0x1 << 4) | (0x3));
CLK_DIV_DMC1 = 0x07071713;
// 3.设置CMU_TOP相关
//
MUX_ONENAND_SEL = 0x0;
MUX_ACLK_133_SEL = 0x0;
MUX_ACLK_160_SEL = 0x0;
MUX_ACLK_100_SEL = 0x0;
MUX_ACLK_200_SEL = 0x0;
MUX_VPLL_SEL = 0x1;
MUX_EPLL_SEL = 0x1;
CLK_SRC_TOP0 = ((0x0 << 28) | (0x0 << 24) | (0x0 << 20) | (0x0 << 16) | (0x0 << 12) | (0x1 << 8) | (0x1 << 4));
CLK_SRC_TOP1 = 0x01111000;
//
ACLK_400_MCUISP_RATIO = 0x1;
ACLK_266_GPS_RATIO = 0x2;
ONENAND_RATIO = 0x1;
ACLK_133_RATIO = 0x5;
ACLK_160_RATIO = 0x4;
ACLK_100_RATIO = 0x7;
ACLK_200_RATIO = 0x4;
CLK_DIV_TOP = ((0x1 << 24) | (0x2 << 20) | (0x1 << 16) | (0x5 << 12) | (0x4 << 8) | (0x7 << 4) | (0x4));
// 3.设置CMU_LEFTBUS相关
CLK_SRC_LEFTBUS = 0x10;
//
GPL_RATIO = 0x1;
GDL_RATIO = 0x3;
CLK_DIV_LEFTBUS = ((0x1 << 4) | (0x3));
// 4.设置CMU_RIGHTBUS相关
CLK_SRC_RIGHTBUS = 0x10;
//
GPR_RATIO = 0x1;
GDR_RATIO = 0x3;
CLK_DIV_RIGHTBUS = ((0x1 << 4) | (0x3));
// 5.设置各个锁相环(PLL)的locktime
APLL_LOCK = (0x3 * 270);
MPLL_LOCK = (0x3 * 270);
EPLL_LOCK = (0x2 * 3000);
VPLL_LOCK = (0x2 * 3000);
//
APLL_RATIO = 0x2;
CORE_RATIO = 0x0;
CORE2_RATIO = 0x0;
COREM0_RATIO = 0x3;
COREM1_RATIO = 0x7;
PERIPH_RATIO = 0x7;
ATB_RATIO = 0x6;
PCLK_DBG_RATIO = 0x1;
CLK_DIV_CPU0 = ((0x0 << 28) | (0x2 << 24) | (0x1 << 20) | (0x6 << 16) | (0x7 <<12) | (0x7 << 8) | (0x3 << 4) | (0x0));
//
CORES_RATIO = 0x5;
HPM_RATIO = 0x0;
COPY_RATIO = 0x6;
CLK_DIV_CPU1 = ((0x5 << 8) |(0x0 << 4) | (0x6));
// 6.设置APLL = 1400000000
APLL_CON1 = 0x00803800;
APLL_CON0 = (1<<31 | 0xAF<<16 | 0x3<<8 | 0x0);
// 7.设置MPLL = 800000000
MPLL_CON1 = 0x00803800;
MPLL_CON0 = (1<<31 | 0x64<<16 | 0x3<<8 | 0x0);
// 8.设置EPLL = 96000000
EPLL_CON2 = 0x00000080;
EPLL_CON1 = 0x66010000;
EPLL_CON0 = (1<<31 | 0x40<<16 | 0x2<<8 | 0x3);
// 9.设置VPLL = 350000000
VPLL_CON2 = 0x00000080;
VPLL_CON1 = 0x66010000;
VPLL_CON0 = (1<<31 | 0x48<<16 | 0x2<<8 | 0x3);
//10.修改源
CLK_SRC_CPU = 0x01000001;
CLK_SRC_DMC = 0x00011000;
CLK_SRC_TOP0 = 0x00000110;
CLK_SRC_TOP1 = 0x01111000;
}
二、编译、烧写实验
按照前几节介绍的方法,将程序上传到服务器编译,并烧写到SD卡上,给开发板上电,现象和第二个小实验完全相同。
上一篇:Exynos4412裸机程序之操作ICache
下一篇:Exynos4412时钟体系分析
推荐阅读最新更新时间:2024-03-16 16:16
设计资源 培训 开发板 精华推荐
- 报名赢红包,到场抽开发板|2021 RT-Thread 开发者大会等你约!
- EEWORLD E金矿荣耀登场!为梦想加分!
- 全球首款Cortex-M23内核物联网芯片SAML10和SAM L11系列 闯关获取SAML10/SAML11法宝,拆除电子界安全危机,赢好礼!
- EEWorld邀你来拆解(第四期):热门充电宝大拆解
- 有奖报名|TI MSPM0 在【电力输送和工厂自动化与控制系统】、【家用电器和电机控制】中的典型应用
- 话说我接触的ADI实验室电路“评估板”
- 直播已结束【TI MSPM0应用详解:个人电子、楼宇自动化和医疗】
- 有奖直播|恩智浦嵌入式人机界面解决方案详解
- 预约有礼:以光代电,硅光芯片了解一下~ 走进工程师网络学堂直播,赢好礼
- 工程师快乐,所以行业记者快乐!