ARM应用系统开发详解:第3章 ARM微处理器的指令系统

发布者:平静宁静最新更新时间:2016-05-10 来源: eefocus关键字:ARM  微处理器  指令系统 手机看文章 扫描二维码
随时随地手机看文章

3.1  ARM微处理器的指令集概述

3.1.1  ARM微处理器的指令的分类与格式

 

助记符

指令功能描述

ADC

带进位加法指令

ADD

加法指令

AND

逻辑与指令

B

跳转指令

BIC

位清零指令

BL

带返回的跳转指令

BLX

带返回和状态切换的跳转指令

BX

带状态切换的跳转指令

CDP

协处理器数据操作指令

CMN

比较反值指令

CMP

比较指令

EOR

异或指令

LDC

存储器到协处理器的数据传输指令

LDM

加载多个寄存器指令

LDR

存储器到寄存器的数据传输指令

MCR

从ARM寄存器到协处理器寄存器的数据传输指令

MLA

乘加运算指令

MOV

数据传送指令

MRC

从协处理器寄存器到ARM寄存器的数据传输指令

MRS

传送CPSR或SPSR的内容到通用寄存器指令

MSR

传送通用寄存器到CPSR或SPSR的指令

MUL

32位乘法指令

MLA

32位乘加指令

MVN

数据取反传送指令

ORR

逻辑或指令

RSB

逆向减法指令

RSC

带借位的逆向减法指令

SBC

带借位减法指令

STC

协处理器寄存器写入存储器指令

STM

批量内存字写入指令

STR

寄存器到存储器的数据传输指令

SUB

减法指令

SWI

软件中断指令

SWP

交换指令

TEQ

相等测试指令

TST

位测试指令

 

3.1.2  指令的条件域

当处理器工作在ARM状态时,几乎所有的指令均根据CPSR中条件码的状态和指令的条件域有条件的执行。当指令的执行条件满足时,指令被执行,否则指令被忽略。

每一条ARM指令包含4位的条件码,位于指令的最高4位[31:28]。条件码共有16种,每种条件码可用两个字符表示,这两个字符可以添加在指令助记符的后面和指令同时使用。例如,跳转指令B可以加上后缀EQ变为BEQ表示“相等则跳转”,即当CPSR中的Z标志置位时发生跳转。

在16种条件标志码中,只有15种可以使用,如表3-2所示,第16种(1111)为系统保留,暂时不能使用。

表3-2        指令的条件码

条件码

助记符后缀

标 志

含 义

0000

EQ

Z置位

相等

0001

NE

Z清零

不相等

0010

CS

C置位

无符号数大于或等于

0011

CC

C清零

无符号数小于

0100

MI

N置位

负数

0101

PL

N清零

正数或零

0110

VS

V置位

溢出

0111

VC

V清零

未溢出

1000

HI

C置位Z清零

无符号数大于

1001

LS

C清零Z置位

无符号数小于或等于

1010

GE

N等于V

带符号数大于或等于

1011

LT

N不等于V

带符号数小于

1100

GT

Z清零且(N等于V)

带符号数大于

1101

LE

Z置位或(N不等于V)

带符号数小于或等于

1110

AL

忽略

无条件执行

 

3.2  ARM指令的寻址方式

       所谓寻址方式就是处理器根据指令中给出的地址信息来寻找物理地址的方式。目前ARM指令系统支持如下几种常见的寻址方式。

3.2.1  立即寻址

       立即寻址也叫立即数寻址,这是一种特殊的寻址方式,操作数本身就在指令中给出,只要取出指令也就取到了操作数。这个操作数被称为立即数,对应的寻址方式也就叫做立即寻址。例如以下指令:

ADD R0,R0,#1          ;R0←R0+1

ADD R0,R0,#0x3f       ;R0←R0+0x3f

       在以上两条指令中,第二个源操作数即为立即数,要求以“#”为前缀,对于以十六进制表示的立即数,还要求在“#”后加上“0x”或“&”。

3.2.2  寄存器寻址

       寄存器寻址就是利用寄存器中的数值作为操作数,这种寻址方式是各类微处理器经常采用的一种方式,也是一种执行效率较高的寻址方式。以下指令:

ADD R0,R1,R2           ;R0←R1+R2

       该指令的执行效果是将寄存器R1和R2的内容相加,其结果存放在寄存器R0中。

3.2.2  寄存器间接寻址

       寄存器间接寻址就是以寄存器中的值作为操作数的地址,而操作数本身存放在存储器中。例如以下指令:

ADD R0,R1,[R2]         ;R0←R1+[R2]

LDR  R0,[R1]               ;R0←[R1]

STR  R0,[R1]               ;[R1]←R0

在第一条指令中,以寄存器R2的值作为操作数的地址,在存储器中取得一个操作数后与R1相加,结果存入寄存器R0中。

第二条指令将以R1的值为地址的存储器中的数据传送到R0中。

第三条指令将R0的值传送到以R1的值为地址的存储器中。

3.2.3  基址变址寻址

       基址变址寻址就是将寄存器(该寄存器一般称作基址寄存器)的内容与指令中给出的地址偏移量相加,从而得到一个操作数的有效地址。变址寻址方式常用于访问某基地址附近的地址单元。采用变址寻址方式的指令常见有以下几种形式,如下所示:

LDR R0,[R1,#4]            ;R0←[R1+4]

LDR R0,[R1,#4]!          ;R0←[R1+4]、R1←R1+4

LDR R0,[R1] ,#4           ;R0←[R1]、R1←R1+4

LDR R0,[R1,R2]             ;R0←[R1+R2]

在第一条指令中,将寄存器R1的内容加上4形成操作数的有效地址,从而取得操作数存入寄存器R0中。

在第二条指令中,将寄存器R1的内容加上4形成操作数的有效地址,从而取得操作数存入寄存器R0中,然后,R1的内容自增4个字节。

在第三条指令中,以寄存器R1的内容作为操作数的有效地址,从而取得操作数存入寄存器R0中,然后,R1的内容自增4个字节。

在第四条指令中,将寄存器R1的内容加上寄存器R2的内容形成操作数的有效地址,从而取得操作数存入寄存器R0中。

3.2.4  多寄存器寻址

采用多寄存器寻址方式,一条指令可以完成多个寄存器值的传送。这种寻址方式可以用一条指令完成传送最多16个通用寄存器的值。以下指令:

LDMIA R0,{R1,R2,R3,R4}       ;R1←[R0]

                                ;R2←[R0+4]

                                     ;R3←[R0+8]

                                     ;R4←[R0+12]

该指令的后缀IA表示在每次执行完加载/存储操作后,R0按字长度增加,因此,指令可将连续存储单元的值传送到R1~R4。

3.2.5  相对寻址

与基址变址寻址方式相类似,相对寻址以程序计数器PC的当前值为基地址,指令中的地址标号作为偏移量,将两者相加之后得到操作数的有效地址。以下程序段完成子程序的调用和返回,跳转指令BL采用了相对寻址方式:

BL  NEXT                    ;跳转到子程序NEXT处执行

……                        

NEXT

……                            

MOV  PC,LR                      ;从子程序返回

3.2.6  堆栈寻址

堆栈是一种数据结构,按先进后出(First In Last Out,FILO)的方式工作,使用一个称作堆栈指针的专用寄存器指示当前的操作位置,堆栈指针总是指向栈顶。

当堆栈指针指向最后压入堆栈的数据时,称为满堆栈(Full Stack),而当堆栈指针指向下一个将要放入数据的空位置时,称为空堆栈(Empty Stack)。

同时,根据堆栈的生成方式,又可以分为递增堆栈(Ascending  Stack)和递减堆栈(Decending Stack),当堆栈由低地址向高地址生成时,称为递增堆栈,当堆栈由高地址向低地址生成时,称为递减堆栈。这样就有四种类型的堆栈工作方式,ARM微处理器支持这四种类型的堆栈工作方式,即:

-    满递增堆栈:堆栈指针指向最后压入的数据,且由低地址向高地址生成。

-    满递减堆栈:堆栈指针指向最后压入的数据,且由高地址向低地址生成。

-    空递增堆栈:堆栈指针指向下一个将要放入数据的空位置,且由低地址向高地址生成。

-    空递减堆栈:堆栈指针指向下一个将要放入数据的空位置,且由高地址向低地址生成。

3.3  ARM指令集

本节对ARM指令集的六大类指令进行详细的描述。

3.3.1  跳转指令

       跳转指令用于实现程序流程的跳转,在ARM程序中有两种方法可以实现程序流程的跳转:

—       使用专门的跳转指令。

—       直接向程序计数器PC写入跳转地址值。

通过向程序计数器PC写入跳转地址值,可以实现在4GB的地址空间中的任意跳转,在跳转之前结合使用

MOV   LR,PC

等类似指令,可以保存将来的返回地址值,从而实现在4GB连续的线性地址空间的子程序调用。

       ARM指令集中的跳转指令可以完成从当前指令向前或向后的32MB的地址空间的跳转,包括以下4条指令:

       —    B     跳转指令

—       BL  带返回的跳转指令

—       BLX 带返回和状态切换的跳转指令

—       BX  带状态切换的跳转指令

1、  B指令

B指令的格式为:

B{条件}  目标地址

B指令是最简单的跳转指令。一旦遇到一个 B 指令,ARM 处理器将立即跳转到给定的目标地址,从那里继续执行。注意存储在跳转指令中的实际值是相对当前PC值的一个偏移量,而不是一个绝对地址,它的值由汇编器来计算(参考寻址方式中的相对寻址)。它是 24 位有符号数,左移两位后有符号扩展为 32 位,表示的有效偏移为 26 位(前后32MB的地址空间)。以下指令:

B     Label       ;程序无条件跳转到标号Label处执行

CMP   R1,#0      ;当CPSR寄存器中的Z条件码置位时,程序跳转到标号Label处执行

BEQ   Label      

2、  BL指令

BL指令的格式为:

BL{条件} 目标地址

BL 是另一个跳转指令,但跳转之前,会在寄存器R14中保存PC的当前内容,因此,可以通过将R14 的内容重新加载到PC中,来返回到跳转指令之后的那个指令处执行。该指令是实现子程序调用的一个基本但常用的手段。以下指令:

BL    Label       ;当程序无条件跳转到标号Label处执行时,同时将当前的PC值保存到R14中

3、  BLX指令

BLX指令的格式为:

BLX  目标地址

BLX指令从ARM指令集跳转到指令中所指定的目标地址,并将处理器的工作状态有ARM状态切换到Thumb状态,该指令同时将PC的当前内容保存到寄存器R14中。因此,当子程序使用Thumb指令集,而调用者使用ARM指令集时,可以通过BLX指令实现子程序的调用和处理器工作状态的切换。同时,子程序的返回可以通过将寄存器R14值到PC中来完成。

4、  BX指令

BX指令的格式为:

BX{条件}  目标地址

BX指令跳转到指令中所指定的目标地址,目标地址处的指令既可以是ARM指令,也可以是Thumb指令。

3.3.2  数据处理指令

数据处理指令可分为数据传送指令、算术逻辑运算指令和比较指令等。

数据传送指令用于在寄存器和存储器之间进行数据的双向传输。

算术逻辑运算指令完成常用的算术与逻辑的运算,该类指令不但将运算结果保存在目的寄存器中,同时更新CPSR中的相应条件标志位。

比较指令不保存运算结果,只更新CPSR中相应的条件标志位。

数据处理指令包括:

    —  MOV 数据传送指令

    —  MVN 数据取反传送指令

    —  CMP 比较指令

    —  CMN 反值比较指令

    —  TST 位测试指令

    —  TEQ 相等测试指令

    —  ADD 加法指令

    —  ADC 带进位加法指令

    —  SUB 减法指令

    —  SBC 带借位减法指令

    —  RSB 逆向减法指令

    —  RSC 带借位的逆向减法指令

    —  AND 逻辑与指令

    —  ORR 逻辑或指令

    —  EOR 逻辑异或指令

    —  BIC 位清除指令

1、  MOV指令

MOV指令的格式为:

MOV{条件}{S} 目的寄存器,源操作数

MOV指令可完成从另一个寄存器、被移位的寄存器或将一个立即数加载到目的寄存器。其中S选项决定指令的操作是否影响CPSR中条件标志位的值,当没有S时指令不更新CPSR中条件标志位的值。

指令示例:

MOV   R1,R0          ;将寄存器R0的值传送到寄存器R1

MOV   PC,R14         ;将寄存器R14的值传送到PC,常用于子程序返回

MOV   R1,R0,LSL#3   ;将寄存器R0的值左移3位后传送到R1

2、  MVN指令

MVN指令的格式为:

MVN{条件}{S} 目的寄存器,源操作数

MVN指令可完成从另一个寄存器、被移位的寄存器、或将一个立即数加载到目的寄存器。与MOV指令不同之处是在传送之前按位被取反了,即把一个被取反的值传送到目的寄存器中。其中S决定指令的操作是否影响CPSR中条件标志位的值,当没有S时指令不更新CPSR中条件标志位的值。

指令示例:

MVN   R0,#0          ;将立即数0取反传送到寄存器R0中,完成后R0=-1

3、  CMP指令

CMP指令的格式为:

CMP{条件} 操作数1,操作数2

CMP指令用于把一个寄存器的内容和另一个寄存器的内容或立即数进行比较,同时更新CPSR中条件标志位的值。该指令进行一次减法运算,但不存储结果,只更改条件标志位。标志位表示的是操作数1与操作数2的关系(大、小、相等),例如,当操作数1大于操作操作数2,则此后的有GT 后缀的指令将可以执行。

指令示例:

CMP   R1,R0          ;将寄存器R1的值与寄存器R0的值相减,并根据结果设置CPSR的标志位

CMP   R1,#100        ;将寄存器R1的值与立即数100相减,并根据结果设置CPSR的标志位

4、  CMN指令

CMN指令的格式为:

CMN{条件} 操作数1,操作数2

CMN指令用于把一个寄存器的内容和另一个寄存器的内容或立即数取反后进行比较,同时更新CPSR中条件标志位的值。该指令实际完成操作数1和操作数2相加,并根据结果更改条件标志位。

指令示例:

CMN   R1,R0          ;将寄存器R1的值与寄存器R0的值相加,并根据结果设置CPSR的标志位

CMN   R1,#100        ;将寄存器R1的值与立即数100相加,并根据结果设置CPSR的标志位

5、  TST指令

TST指令的格式为:

TST{条件} 操作数1,操作数2

TST指令用于把一个寄存器的内容和另一个寄存器的内容或立即数进行按位的与运算,并根据运算结果更新CPSR中条件标志位的值。操作数1是要测试的数据,而操作数2是一个位掩码,该指令一般用来检测是否设置了特定的位。

指令示例:

TST   R1,#%1        ;用于测试在寄存器R1中是否设置了最低位(%表示二进制数)

TST   R1,#0xffe      ;将寄存器R1的值与立即数0xffe按位与,并根据结果设置CPSR的标志位

6、  TEQ指令

TEQ指令的格式为:

TEQ{条件} 操作数1,操作数2

TEQ指令用于把一个寄存器的内容和另一个寄存器的内容或立即数进行按位的异或运算,并根据运算结果更新CPSR中条件标志位的值。该指令通常用于比较操作数1和操作数2是否相等。

指令示例:

TEQ   R1,R2      ;将寄存器R1的值与寄存器R2的值按位异或,并根据结果设置CPSR的标志位

7、  ADD指令

ADD指令的格式为:

ADD{条件}{S} 目的寄存器,操作数1,操作数2

ADD指令用于把两个操作数相加,并将结果存放到目的寄存器中。操作数1应是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。

指令示例:

ADD   R0,R1,R2                ; R0 = R1 + R2

ADD   R0,R1,#256              ; R0 = R1 + 256

ADD   R0,R2,R3,LSL#1         ; R0 = R2 + (R3 << 1)

8、  ADC指令

ADC指令的格式为:

ADC{条件}{S} 目的寄存器,操作数1,操作数2

ADC指令用于把两个操作数相加,再加上CPSR中的C条件标志位的值,并将结果存放到目的寄存器中。它使用一个进位标志位,这样就可以做比32位大的数的加法,注意不要忘记设置S后缀来更改进位标志。操作数1应是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。

以下指令序列完成两个128位数的加法,第一个数由高到低存放在寄存器R7~R4,第二个数由高到低存放在寄存器R11~R8,运算结果由高到低存放在寄存器R3~R0:

ADDS R0,R4,R8            ; 加低端的字

ADCS R1,R5,R9           ; 加第二个字,带进位

ADCS R2,R6,R10          ; 加第三个字,带进位

ADC   R3,R7,R11          ; 加第四个字,带进位

9、  SUB指令

SUB指令的格式为:

SUB{条件}{S} 目的寄存器,操作数1,操作数2

SUB指令用于把操作数1减去操作数2,并将结果存放到目的寄存器中。操作数1应是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。该指令可用于有符号数或无符号数的减法运算。

指令示例:

SUB   R0,R1,R2                ; R0 = R1 - R2

SUB   R0,R1,#256              ; R0 = R1 - 256

SUB   R0,R2,R3,LSL#1         ; R0 = R2 - (R3 << 1)

10、SBC指令

SBC指令的格式为:

SBC{条件}{S} 目的寄存器,操作数1,操作数2

SBC指令用于把操作数1减去操作数2,再减去CPSR中的C条件标志位的反码,并将结果存放到目的寄存器中。操作数1应是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。该指令使用进位标志来表示借位,这样就可以做大于32位的减法,注意不要忘记设置S后缀来更改进位标志。该指令可用于有符号数或无符号数的减法运算。

指令示例:

SUBS R0,R1,R2                ; R0 = R1 - R2 - !C,并根据结果设置CPSR的进位标志位

11、RSB指令

RSB指令的格式为:

RSB{条件}{S} 目的寄存器,操作数1,操作数2

RSB指令称为逆向减法指令,用于把操作数2减去操作数1,并将结果存放到目的寄存器中。操作数1应是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。该指令可用于有符号数或无符号数的减法运算。

指令示例:

RSB   R0,R1,R2                ; R0 = R2 – R1

RSB   R0,R1,#256              ; R0 = 256 – R1

RSB   R0,R2,R3,LSL#1         ; R0 = (R3 << 1) - R2

12、RSC指令

RSC指令的格式为:

RSC{条件}{S} 目的寄存器,操作数1,操作数2

RSC指令用于把操作数2减去操作数1,再减去CPSR中的C条件标志位的反码,并将结果存放到目的寄存器中。操作数1应是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。该指令使用进位标志来表示借位,这样就可以做大于32位的减法,注意不要忘记设置S后缀来更改进位标志。该指令可用于有符号数或无符号数的减法运算。

指令示例:

RSC   R0,R1,R2                ; R0 = R2 – R1 - !C

13、AND指令

AND指令的格式为:

AND{条件}{S} 目的寄存器,操作数1,操作数2

AND指令用于在两个操作数上进行逻辑与运算,并把结果放置到目的寄存器中。操作数1应是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。该指令常用于屏蔽操作数1的某些位。

指令示例:

AND   R0,R0,#3               ; 该指令保持R0的0、1位,其余位清零。

14、ORR指令

ORR指令的格式为:

ORR{条件}{S} 目的寄存器,操作数1,操作数2

ORR指令用于在两个操作数上进行逻辑或运算,并把结果放置到目的寄存器中。操作数1应是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。该指令常用于设置操作数1的某些位。

指令示例:

ORR   R0,R0,#3               ; 该指令设置R0的0、1位,其余位保持不变。

15、EOR指令

EOR指令的格式为:

EOR{条件}{S} 目的寄存器,操作数1,操作数2

EOR指令用于在两个操作数上进行逻辑异或运算,并把结果放置到目的寄存器中。操作数1应是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。该指令常用于反转操作数1的某些位。

指令示例:

EOR   R0,R0,#3               ; 该指令反转R0的0、1位,其余位保持不变。

16、BIC指令

BIC指令的格式为:

BIC{条件}{S} 目的寄存器,操作数1,操作数2

BIC指令用于清除操作数1的某些位,并把结果放置到目的寄存器中。操作数1应是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。操作数2为32位的掩码,如果在掩码中设置了某一位,则清除这一位。未设置的掩码位保持不变。

指令示例:

BIC   R0,R0,#%1011          ; 该指令清除 R0 中的位 0、1、和 3,其余的位保持不变。

3.3.3  乘法指令与乘加指令

ARM微处理器支持的乘法指令与乘加指令共有6条,可分为运算结果为32位和运算结果为64位两类,与前面的数据处理指令不同,指令中的所有操作数、目的寄存器必须为通用寄存器,不能对操作数使用立即数或被移位的寄存器,同时,目的寄存器和操作数1必须是不同的寄存器。

乘法指令与乘加指令共有以下6条:

    —  MUL     32位乘法指令

—       MLA     32位乘加指令

—       SMULL   64位有符号数乘法指令

—       SMLAL   64位有符号数乘加指令

—       UMULL   64位无符号数乘法指令

—       UMLAL   64位无符号数乘加指令

1、  MUL指令

MUL指令的格式为:

MUL{条件}{S} 目的寄存器,操作数1,操作数2

MUL指令完成将操作数1与操作数2的乘法运算,并把结果放置到目的寄存器中,同时可以根据运算结果设置CPSR中相应的条件标志位。其中,操作数1和操作数2均为32位的有符号数或无符号数。

指令示例:

MUL   R0,R1,R2       ;R0 = R1 × R2

MULS  R0,R1,R2       ;R0 = R1 × R2,同时设置CPSR中的相关条件标志位

2、  MLA指令

MLA指令的格式为:

MLA{条件}{S} 目的寄存器,操作数1,操作数2,操作数3

MLA指令完成将操作数1与操作数2的乘法运算,再将乘积加上操作数3,并把结果放置到目的寄存器中,同时可以根据运算结果设置CPSR中相应的条件标志位。其中,操作数1和操作数2均为32位的有符号数或无符号数。

指令示例:

MLA   R0,R1,R2,R3       ;R0 = R1 × R2 + R3

MLAS  R0,R1,R2,R3       ;R0 = R1 × R2 + R3,同时设置CPSR中的相关条件标志位

3、  SMULL指令

SMULL指令的格式为:

SMULL{条件}{S}   目的寄存器Low,目的寄存器低High,操作数1,操作数2

SMULL指令完成将操作数1与操作数2的乘法运算,并把结果的低32位放置到目的寄存器Low中,结果的高32位放置到目的寄存器High中,同时可以根据运算结果设置CPSR中相应的条件标志位。其中,操作数1和操作数2均为32位的有符号数。

指令示例:

SMULL R0,R1,R2,R3       ;R0 = (R2 × R3)的低32位

                          ;R1 = (R2 × R3)的高32位

4、  SMLAL指令

SMLAL指令的格式为:

SMLAL{条件}{S}   目的寄存器Low,目的寄存器低High,操作数1,操作数2

SMLAL指令完成将操作数1与操作数2的乘法运算,并把结果的低32位同目的寄存器Low中的值相加后又放置到目的寄存器Low中,结果的高32位同目的寄存器High中的值相加后又放置到目的寄存器High中,同时可以根据运算结果设置CPSR中相应的条件标志位。其中,操作数1和操作数2均为32位的有符号数。

对于目的寄存器Low,在指令执行前存放64位加数的低32位,指令执行后存放结果的低32位。

对于目的寄存器High,在指令执行前存放64位加数的高32位,指令执行后存放结果的高32位。

指令示例:

SMLAL R0,R1,R2,R3       ;R0 = (R2 × R3)的低32位 + R0

                          ;R1 = (R2 × R3)的高32位 + R1

5、  UMULL指令

UMULL指令的格式为:

UMULL{条件}{S}   目的寄存器Low,目的寄存器低High,操作数1,操作数2

UMULL指令完成将操作数1与操作数2的乘法运算,并把结果的低32位放置到目的寄存器Low中,结果的高32位放置到目的寄存器High中,同时可以根据运算结果设置CPSR中相应的条件标志位。其中,操作数1和操作数2均为32位的无符号数。

指令示例:

UMULL R0,R1,R2,R3       ;R0 = (R2 × R3)的低32位

                          ;R1 = (R2 × R3)的高32位

6、  UMLAL指令

UMLAL指令的格式为:

UMLAL{条件}{S}   目的寄存器Low,目的寄存器低High,操作数1,操作数2

UMLAL指令完成将操作数1与操作数2的乘法运算,并把结果的低32位同目的寄存器Low中的值相加后又放置到目的寄存器Low中,结果的高32位同目的寄存器High中的值相加后又放置到目的寄存器High中,同时可以根据运算结果设置CPSR中相应的条件标志位。其中,操作数1和操作数2均为32位的无符号数。

对于目的寄存器Low,在指令执行前存放64位加数的低32位,指令执行后存放结果的低32位。

对于目的寄存器High,在指令执行前存放64位加数的高32位,指令执行后存放结果的高32位。

指令示例:

UMLAL R0,R1,R2,R3       ;R0 = (R2 × R3)的低32位 + R0

                          ;R1 = (R2 × R3)的高32位 + R1

3.3.4  程序状态寄存器访问指令

ARM微处理器支持程序状态寄存器访问指令,用于在程序状态寄存器和通用寄存器之间传送数据,程序状态寄存器访问指令包括以下两条:

    —  MRS 程序状态寄存器到通用寄存器的数据传送指令

—       MSR 通用寄存器到程序状态寄存器的数据传送指令

1、  MRS指令

MRS指令的格式为:

MRS{条件}    通用寄存器,程序状态寄存器(CPSR或SPSR)

MRS指令用于将程序状态寄存器的内容传送到通用寄存器中。该指令一般用在以下几种情况:

-  当需要改变程序状态寄存器的内容时,可用MRS将程序状态寄存器的内容读入通用寄存器,修改后再写回程序状态寄存器。

-  当在异常处理或进程切换时,需要保存程序状态寄存器的值,可先用该指令读出程序状态寄存器的值,然后保存。

指令示例:

MRS   R0,CPSR        ;传送CPSR的内容到R0

MRS   R0,SPSR        ;传送SPSR的内容到R0

2、  MSR指令

MSR指令的格式为:

MSR{条件}    程序状态寄存器(CPSR或SPSR)_<域>,操作数

MSR指令用于将操作数的内容传送到程序状态寄存器的特定域中。其中,操作数可以为通用寄存器或立即数。<域>用于设置程序状态寄存器中需要操作的位,32位的程序状态寄存器可分为4个域:

位[31:24]为条件标志位域,用f表示;

位[23:16]为状态位域,用s表示;

位[15:8]为扩展位域,用x表示;

位[7:0]为控制位域,用c表示;

该指令通常用于恢复或改变程序状态寄存器的内容,在使用时,一般要在MSR指令中指明将要操作的域。

指令示例:

MSR   CPSR,R0        ;传送R0的内容到CPSR

MSR   SPSR,R0        ;传送R0的内容到SPSR

MSR   CPSR_c,R0      ;传送R0的内容到SPSR,但仅仅修改CPSR中的控制位域

3.3.5  加载/存储指令

ARM微处理器支持加载/存储指令用于在寄存器和存储器之间传送数据,加载指令用于将存储器中的数据传送到寄存器,存储指令则完成相反的操作。常用的加载存储指令如下:

    —  LDR     字数据加载指令

—       LDRB    字节数据加载指令

    —  LDRH    半字数据加载指令

    —  STR     字数据存储指令

—       STRB    字节数据存储指令

    —  STRH    半字数据存储指令

1、LDR指令

LDR指令的格式为:

LDR{条件} 目的寄存器,<存储器地址>

LDR指令用于从存储器中将一个32位的字数据传送到目的寄存器中。该指令通常用于从存储器中读取32位的字数据到通用寄存器,然后对数据进行处理。当程序计数器PC作为目的寄存器时,指令从存储器中读取的字数据被当作目的地址,从而可以实现程序流程的跳转。该指令在程序设计中比较常用,且寻址方式灵活多样,请读者认真掌握。

指令示例:

LDR   R0,[R1]                  ;将存储器地址为R1的字数据读入寄存器R0。

LDR   R0,[R1,R2]             ;将存储器地址为R1+R2的字数据读入寄存器R0。

LDR   R0,[R1,#8]             ;将存储器地址为R1+8的字数据读入寄存器R0。

LDR   R0,[R1,R2] !           ;将存储器地址为R1+R2的字数据读入寄存器R0,并将新地址R1+R2写入R1。

LDR   R0,[R1,#8] !          ;将存储器地址为R1+8的字数据读入寄存器R0,并将新地址R1+8写入R1。

LDR   R0,[R1],R2              ;将存储器地址为R1的字数据读入寄存器R0,并将新地址R1+R2写入R1。

LDR   R0,[R1,R2,LSL#2]!   ;将存储器地址为R1+R2×4的字数据读入寄存器R0,并将新地址R1+R2×4写入R1。

LDR   R0,[R1],R2,LSL#2     ;将存储器地址为R1的字数据读入寄存器R0,并将新地址R1+R2×4写入R1。

2、LDRB指令

LDRB指令的格式为:

LDR{条件}B 目的寄存器,<存储器地址>

LDRB指令用于从存储器中将一个8位的字节数据传送到目的寄存器中,同时将寄存器的高24位清零。该指令通常用于从存储器中读取8位的字节数据到通用寄存器,然后对数据进行处理。当程序计数器PC作为目的寄存器时,指令从存储器中读取的字数据被当作目的地址,从而可以实现程序流程的跳转。

指令示例:

LDRB R0,[R1]         ;将存储器地址为R1的字节数据读入寄存器R0,并将R0的高24位清零。

LDRB R0,[R1,#8]    ;将存储器地址为R1+8的字节数据读入寄存器R0,并将R0的高24位清零。

3、LDRH指令

LDRH指令的格式为:

LDR{条件}H 目的寄存器,<存储器地址>

LDRH指令用于从存储器中将一个16位的半字数据传送到目的寄存器中,同时将寄存器的高16位清零。该指令通常用于从存储器中读取16位的半字数据到通用寄存器,然后对数据进行处理。当程序计数器PC作为目的寄存器时,指令从存储器中读取的字数据被当作目的地址,从而可以实现程序流程的跳转。

指令示例:

LDRH R0,[R1]         ;将存储器地址为R1的半字数据读入寄存器R0,并将R0的高16位清零。

LDRH R0,[R1,#8]    ;将存储器地址为R1+8的半字数据读入寄存器R0,并将R0的高16位清零。

LDRH R0,[R1,R2]    ;将存储器地址为R1+R2的半字数据读入寄存器R0,并将R0的高16位清零。

4、STR指令

STR指令的格式为:

STR{条件} 源寄存器,<存储器地址>

STR指令用于从源寄存器中将一个32位的字数据传送到存储器中。该指令在程序设计中比较常用,且寻址方式灵活多样,使用方式可参考指令LDR。

指令示例:

STR   R0,[R1],#8    ;将R0中的字数据写入以R1为地址的存储器中,并将新地址R1+8写入R1。

STR   R0,[R1,#8]    ;将R0中的字数据写入以R1+8为地址的存储器中。

5、STRB指令

STRB指令的格式为:

STR{条件}B 源寄存器,<存储器地址>

STRB指令用于从源寄存器中将一个8位的字节数据传送到存储器中。该字节数据为源寄存器中的低8位。

指令示例:

STRB R0,[R1]         ;将寄存器R0中的字节数据写入以R1为地址的存储器中。

STRB R0,[R1,#8]    ;将寄存器R0中的字节数据写入以R1+8为地址的存储器中。

6、STRH指令

STRH指令的格式为:

STR{条件}H 源寄存器,<存储器地址>

STRH指令用于从源寄存器中将一个16位的半字数据传送到存储器中。该半字数据为源寄存器中的低16位。

指令示例:

STRH R0,[R1]         ;将寄存器R0中的半字数据写入以R1为地址的存储器中。

STRH R0,[R1,#8]    ;将寄存器R0中的半字数据写入以R1+8为地址的存储器中。

3.3.6  批量数据加载/存储指令

ARM微处理器所支持批量数据加载/存储指令可以一次在一片连续的存储器单元和多个寄存器之间传送数据,批量加载指令用于将一片连续的存储器中的数据传送到多个寄存器,批量数据存储指令则完成相反的操作。常用的加载存储指令如下:

    —  LDM     批量数据加载指令

—       STM     批量数据存储指令

LDM(或STM)指令

LDM(或STM)指令的格式为:

LDM(或STM){条件}{类型} 基址寄存器{!},寄存器列表{∧}

LDM(或STM)指令用于从由基址寄存器所指示的一片连续存储器到寄存器列表所指示的多个寄存器之间传送数据,该指令的常见用途是将多个寄存器的内容入栈或出栈。其中,{类型}为以下几种情况:

IA   每次传送后地址加1;

IB   每次传送前地址加1;

DA   每次传送后地址减1;

DB   每次传送前地址减1;

FD   满递减堆栈;

ED   空递减堆栈;

FA   满递增堆栈;

EA   空递增堆栈;

{!}为可选后缀,若选用该后缀,则当数据传送完毕之后,将最后的地址写入基址寄存器,否则基址寄存器的内容不改变。

基址寄存器不允许为R15,寄存器列表可以为R0~R15的任意组合。

{∧}为可选后缀,当指令为LDM且寄存器列表中包含R15,选用该后缀时表示:除了正常的数据传送之外,还将SPSR到CPSR。同时,该后缀还表示传入或传出的是用户模式下的寄存器,而不是当前模式下的寄存器。

指令示例:

STMFD  R13!,{R0,R4-R12,LR}      ;将寄存器列表中的寄存器(R0,R4到R12,LR)存入堆栈。

LDMFD  R13!,{R0,R4-R12,PC}      ;将堆栈内容恢复到寄存器(R0,R4到R12,LR)。

3.3.7  数据交换指令

ARM微处理器所支持数据交换指令能在存储器和寄存器之间交换数据。数据交换指令有如下两条:

    —  SWP     字数据交换指令

—       SWPB    字节数据交换指令

1、SWP指令

SWP指令的格式为:

SWP{条件} 目的寄存器,源寄存器1,[源寄存器2]

SWP指令用于将源寄存器2所指向的存储器中的字数据传送到目的寄存器中,同时将源寄存器1中的字数据传送到源寄存器2所指向的存储器中。显然,当源寄存器1和目的寄存器为同一个寄存器时,指令交换该寄存器和存储器的内容。

指令示例:

SWP   R0,R1,[R2]         ;将R2所指向的存储器中的字数据传送到R0,同时将R1中的字数据传送到R2所指向的存储单元。

SWP   R0,R0,[R1]         ;该指令完成将R1所指向的存储器中的字数据与R0中的字数据交换。

2、SWPB指令

SWPB指令的格式为:

SWP{条件}B 目的寄存器,源寄存器1,[源寄存器2]

SWPB指令用于将源寄存器2所指向的存储器中的字节数据传送到目的寄存器中,目的寄存器的高24清零,同时将源寄存器1中的字节数据传送到源寄存器2所指向的存储器中。显然,当源寄存器1和目的寄存器为同一个寄存器时,指令交换该寄存器和存储器的内容。

指令示例:

SWPB R0,R1,[R2]         ;将R2所指向的存储器中的字节数据传送到R0,R0的高24位清零,同时将R1中的低8位数据传送到R2所指向的存储单元。

SWPB R0,R0,[R1]         ;该指令完成将R1所指向的存储器中的字节数据与R0中的低8位数据交换。

3.3.8  移位指令(操作)

ARM微处理器内嵌的桶型移位器(Barrel Shifter),支持数据的各种移位操作,移位操作在ARM指令集中不作为单独的指令使用,它只能作为指令格式中是一个字段,在汇编语言中表示为指令中的选项。例如,数据处理指令的第二个操作数为寄存器时,就可以加入移位操作选项对它进行各种移位操作。移位操作包括如下6种类型,ASL和LSL是等价的,可以自由互换:

    —  LSL  逻辑左移

—       ASL  算术左移

—  LSR  逻辑右移

—  ASR  算术右移

—  ROR  循环右移

—  RRX  带扩展的循环右移

1、LSL(或ASL)操作

LSL(或ASL)操作的格式为:

通用寄存器,LSL(或ASL) 操作数      

LSL(或ASL)可完成对通用寄存器中的内容进行逻辑(或算术)的左移操作,按操作数所指定的数量向左移位,低位用零来填充。其中,操作数可以是通用寄存器,也可以是立即数(0~31)。

操作示例:

      MOV    R0, R1, LSL#2     ;将R1中的内容左移两位后传送到R0中。

2、LSR操作

LSR操作的格式为:

通用寄存器,LSR 操作数      

LSR可完成对通用寄存器中的内容进行右移的操作,按操作数所指定的数量向右移位,左端用零来填充。其中,操作数可以是通用寄存器,也可以是立即数(0~31)。

操作示例:

      MOV    R0, R1, LSR#2     ;将R1中的内容右移两位后传送到R0中,左端用零来填充。

3、ASR操作

ASR操作的格式为:

通用寄存器,ASR 操作数      

ASR可完成对通用寄存器中的内容进行右移的操作,按操作数所指定的数量向右移位,左端用第31位的值来填充。其中,操作数可以是通用寄存器,也可以是立即数(0~31)。

操作示例:

      MOV    R0, R1, ASR#2     ;将R1中的内容右移两位后传送到R0中,左端用第31位的值来填充。

4、ROR操作

ROR操作的格式为:

通用寄存器,ROR 操作数      

ROR可完成对通用寄存器中的内容进行循环右移的操作,按操作数所指定的数量向右循环移位,左端用右端移出的位来填充。其中,操作数可以是通用寄存器,也可以是立即数(0~31)。显然,当进行32位的循环右移操作时,通用寄存器中的值不改变。

操作示例:

      MOV    R0, R1, ROR#2     ;将R1中的内容循环右移两位后传送到R0中。

5、RRX操作

RRX操作的格式为:

通用寄存器,RRX 操作数      

RRX可完成对通用寄存器中的内容进行带扩展的循环右移的操作,按操作数所指定的数量向右循环移位,左端用进位标志位C来填充。其中,操作数可以是通用寄存器,也可以是立即数(0~31)。

操作示例:

      MOV    R0, R1, RRX#2     ;将R1中的内容进行带扩展的循环右移两位后传送到R0中。

3.3.9  协处理器指令

ARM微处理器可支持多达16个协处理器,用于各种协处理操作,在程序执行的过程中,每个协处理器只执行针对自身的协处理指令,忽略ARM处理器和其他协处理器的指令。

ARM的协处理器指令主要用于ARM处理器初始化ARM协处理器的数据处理操作,以及在ARM处理器的寄存器和协处理器的寄存器之间传送数据,和在ARM协处理器的寄存器和存储器之间传送数据。ARM协处理器指令包括以下5条:

    —  CDP     协处理器数操作指令

—       LDC     协处理器数据加载指令

—       STC     协处理器数据存储指令

—       MCR     ARM处理器寄存器到协处理器寄存器的数据传送指令

—       MRC     协处理器寄存器到ARM处理器寄存器的数据传送指令

1、CDP指令

CDP指令的格式为:

CDP{条件} 协处理器编码,协处理器操作码1,目的寄存器,源寄存器1,源寄存器2,协处理器操作码2。

CDP指令用于ARM处理器通知ARM协处理器执行特定的操作,若协处理器不能成功完成特定的操作,则产生未定义指令异常。其中协处理器操作码1和协处理器操作码2为协处理器将要执行的操作,目的寄存器和源寄存器均为协处理器的寄存器,指令不涉及ARM处理器的寄存器和存储器。

指令示例:

CDP   P3,2,C12,C10,C3,4        ;该指令完成协处理器P3的初始化

2、LDC指令

LDC指令的格式为:

LDC{条件}{L} 协处理器编码,目的寄存器,[源寄存器]

LDC指令用于将源寄存器所指向的存储器中的字数据传送到目的寄存器中,若协处理器不能成功完成传送操作,则产生未定义指令异常。其中,{L}选项表示指令为长读取操作,如用于双精度数据的传输。

指令示例:

LDC   P3,C4,[R0]         ;将ARM处理器的寄存器R0所指向的存储器中的字数据传送到协处理器P3的寄存器C4中。

3、STC指令

STC指令的格式为:

STC{条件}{L} 协处理器编码,源寄存器,[目的寄存器]

STC指令用于将源寄存器中的字数据传送到目的寄存器所指向的存储器中,若协处理器不能成功完成传送操作,则产生未定义指令异常。其中,{L}选项表示指令为长读取操作,如用于双精度数据的传输。

指令示例:

STC   P3,C4,[R0]         ;将协处理器P3的寄存器C4中的字数据传送到ARM处理器的寄存器R0所指向的存储器中。

4、MCR指令

MCR指令的格式为:

MCR{条件} 协处理器编码,协处理器操作码1,源寄存器,目的寄存器1,目的寄存器2,协处理器操作码2。

MCR指令用于将ARM处理器寄存器中的数据传送到协处理器寄存器中,若协处理器不能成功完成操作,则产生未定义指令异常。其中协处理器操作码1和协处理器操作码2为协处理器将要执行的操作,源寄存器为ARM处理器的寄存器,目的寄存器1和目的寄存器2均为协处理器的寄存器。

指令示例:

MCR   P3,3,R0,C4,C5,6    ;该指令将ARM处理器寄存器R0中的数据传送到协处理器P3的寄存器C4和C5中。

5、MRC指令

MRC指令的格式为:

MRC{条件} 协处理器编码,协处理器操作码1,目的寄存器,源寄存器1,源寄存器2,协处理器操作码2。

MRC指令用于将协处理器寄存器中的数据传送到ARM处理器寄存器中,若协处理器不能成功完成操作,则产生未定义指令异常。其中协处理器操作码1和协处理器操作码2为协处理器将要执行的操作,目的寄存器为ARM处理器的寄存器,源寄存器1和源寄存器2均为协处理器的寄存器。

指令示例:

MRC   P3,3,R0,C4,C5,6    ;该指令将协处理器P3的寄存器中的数据传送到ARM处理器寄存器中。

3.3.10  异常产生指令

ARM微处理器所支持的异常指令有如下两条:

    —  SWI     软件中断指令

—       BKPT    断点中断指令

1、SWI指令

SWI指令的格式为:

SWI{条件} 24位的立即数

SWI指令用于产生软件中断,以便用户程序能调用操作系统的系统例程。操作系统在SWI的异常处理程序中提供相应的系统服务,指令中24位的立即数指定用户程序调用系统例程的类型,相关参数通过通用寄存器传递,当指令中24位的立即数被忽略时,用户程序调用系统例程的类型由通用寄存器R0的内容决定,同时,参数通过其他通用寄存器传递。

指令示例:

SWI   0x02         ;该指令调用操作系统编号位02的系统例程。

2、BKPT指令

BKPT指令的格式为:

BKPT   16位的立即数

BKPT指令产生软件断点中断,可用于程序的调试。

3.4  Thumb指令及应用

为兼容数据总线宽度为16位的应用系统,ARM体系结构除了支持执行效率很高的32位ARM指令集以外,同时支持16位的Thumb指令集。Thumb指令集是ARM指令集的一个子集,允许指令编码为16位的长度。与等价的32位代码相比较,Thumb指令集在保留32代码优势的同时,大大的节省了系统的存储空间。

所有的Thumb指令都有对应的ARM指令,而且Thumb的编程模型也对应于ARM的编程模型,在应用程序的编写过程中,只要遵循一定调用的规则,Thumb子程序和ARM子程序就可以互相调用。当处理器在执行ARM程序段时,称ARM处理器处于ARM工作状态,当处理器在执行Thumb程序段时,称ARM处理器处于Thumb工作状态。

与ARM指令集相比较,Thumb指令集中的数据处理指令的操作数仍然是32位,指令地址也为32位,但Thumb指令集为实现16位的指令长度,舍弃了ARM指令集的一些特性,如大多数的Thumb指令是无条件执行的,而几乎所有的ARM指令都是有条件执行的;大多数的Thumb数据处理指令的目的寄存器与其中一个源寄存器相同。

由于Thumb指令的长度为16位,即只用ARM指令一半的位数来实现同样的功能,所以,要实现特定的程序功能,所需的Thumb指令的条数较ARM指令多。在一般的情况下,Thumb指令与ARM指令的时间效率和空间效率关系为:

—       Thumb代码所需的存储空间约为ARM代码的60%~70%

—       Thumb代码使用的指令数比ARM代码多约30%~40%

—       若使用32位的存储器,ARM代码比Thumb代码快约40%

—       若使用16位的存储器,Thumb代码比ARM代码快约40%~50%

—       与ARM代码相比较,使用Thumb代码,存储器的功耗会降低约30%

显然,ARM指令集和Thumb指令集各有其优点,若对系统的性能有较高要求,应使用32位的存储系统和ARM指令集,若对系统的成本及功耗有较高要求,则应使用16位的存储系统和Thumb指令集。当然,若两者结合使用,充分发挥其各自的优点,会取得更好的效果。

3.5  本章小节

本章系统的介绍了ARM指令集中的基本指令,以及各指令的应用场合及方法,由基本指令还可以派生出一些新的指令,但使用方法与基本指令类似。与常见的如X86体系结构的汇编指令相比较,ARM指令系统无论是从指令集本身,还是从寻址方式上,都相对复杂一些。

Thumb指令集作为ARM指令集的一个子集,其使用方法与ARM指令集类似,在此未作详细的描述,但这并不意味着Thumb指令集不如ARM指令集重要,事实上,他们各自有其自己的应用场合。

关键字:ARM  微处理器  指令系统 引用地址:ARM应用系统开发详解:第3章 ARM微处理器的指令系统

上一篇:S3C2410下WinCE6.0的启动过程详解
下一篇:ARM内存管理MMU详解

推荐阅读最新更新时间:2024-03-16 14:53

arm的MMU详解(虚拟地址)
一、MMU的产生 许多年以前,当人们还在使用DOS或是更古老的操作系统的时候,计算机的内存还非常小,一般都是以K为单位进行计算,相应的,当时的程序规模也不大,所以内存容量虽然小,但还是可以容纳当时的程序。但随着图形界面的兴起还用用户需求的不断增大,应用程序的规模也随之膨胀起来,终于一个难题出现在程序员的面前,那就是应用程序太大以至于内存容纳不下该程序,通常解决的办法是把程序分割成许多称为覆盖块(overlay)的片段。覆盖块0首先运行,结束时他将调用另一个覆盖块。虽然覆盖块的交换是由OS完成的,但是必须先由程序员把程序先进行分割,这是一个费时费力的工作,而且相当枯燥。人们必须找到更好的办法从根本上解决这个问题。不久人们找到了一个办
[单片机]
<font color='red'>arm</font>的MMU详解(虚拟地址)
ARM与TSMC完成首件20纳米ARM Cortex-A15 处理器设计定案
     ARM公司与TSMC日前共同宣布,已顺利完成首件采用20纳米工艺技术生产的ARM Cortex-A15 处理器设计定案(Tape Out)。藉由TSMC在开放创新平台上建构完成的20纳米设计生态环境,双方花费六个月的时间即完成从缓存器转换阶层(RTL)到产品设计定案的整个设计过程。 随着设计定案的完成,ARM公司将提供优化的架构,在TSMC特定的20纳米工艺技术上提升产品的效能、功率与面积(performance, power and area),进而强化Cortex-A15处理器优化套件(Processor Optimization Pack)的规格。相较于前几世代工艺技术,TSMC的20纳米先进工艺技术可提升产品
[工业控制]
基于ARM处理器的低功耗的语音去噪系统设计
谱减法作为一种很有效的语音信号处理手段,广泛应用于现代语音增强系统中。针对低功耗设计的要求,本系统采用功耗低且功能强大的ARM芯片,用C语言编程将算法成功移植到ARM系统中,该系统功耗低,并有效地减小了嗓声,改善了语音通信质量,有较好的实用性。 近年来,电子技术的发展促进了多媒体设备的繁荣,同时随着人们对便携式设备和可移动终端的广泛需求,使得低功耗成为了这类电子设备最大的技术难题之一。低功耗意味着在同一时间段内在相同条件下移动终端消耗的能量更少,使得此类设备有更长的续航工作时间。低功耗设计降低了系统功耗,提高了能量利用率。 ARM微处理器因其高性能和低功耗的特性,特别适合于便携式设备的开发与应用。本文设计了一种基于
[单片机]
基于<font color='red'>ARM</font>处理器的低功耗的语音去噪系统设计
中国嵌入式微处理器市场年产值逼近2500亿
与人们的生活息息相关的嵌入式系统,虽然体积不大但是商机无限。在24日召开的中国国际嵌入式大会上传出最新消息,按照目前的发展速度,中国嵌入式软件产业规模到今年年底行业产值将逼近2500亿元人民币。 在我们的生活中,嵌入式系统无处不在。从日常使用的手机、MP3到复杂的航天飞机、导弹系统,都离不开嵌入式微处理器。在一辆轿车中,就可能集合了十几个嵌入式系统。嵌入式系统的核心是微处理器,不同于计算机的是,嵌入式系统将微处理器嵌入到特定的控制对象中,以操作电子元件执行相应的任务,方便人们的生活。 嵌入式技术被广泛应用于通信、消费电子、医疗电子、交通系统等领域,目前已经成为发展最迅速的计算机技术,在西方已经有了20年的历史。
[单片机]
关于ARM2440中断源个数的一点想法
S3c2440支持多达36个内部中断源和24个外部中断源,分别使用内部终端屏蔽寄存器INTMSK和外部中断寄存器MSK进行屏蔽控制。其中,外部中断源通过GPIO以复用的方式成为内部中断源的一部分。 但是我们清楚,INTMSK是一个32位的寄存器,最多只能支持32中断,它是如何对应这么多中断的呢? 首先我们先看INTMSK对应的位。 INTERRUPT MASK (INTMSK) REGISTER (Continued) INT_ADC 0 = Service available, 1 = Masked 1 INT_RTC 0 = Service available, 1 = Masked 1 INT_SPI1 0 = Se
[单片机]
单片机/ARM死机或跑飞的诊断疗法
有时,在写ARM时会遇到经常死机的情况,莫名其妙,在这里我总结了一些单片机/ARM死机或者跑飞的一些常见的查找方法和我对此的一些拙见希望对大家有帮助。 “死机”和“跑飞” 随着单片机在能源领域中的广泛应用,单片机的抗干扰问题越来越突出,煤矿井下环境一般比较恶劣,这便会为单片机控制系统带来各种干扰,以致系统不能正常工作。单片机应用系统的抗干扰性能主要取决于硬件的抗干扰设计,但软件抗干扰设计作为硬件抗干扰的完善和补充,作用也非常重要,因为大量的干扰通常并不能影响系统内硬件的运作,却常会使系统的软件无法正常运行,单片机应用的一个突出问题,便是单片机运行过程中经常出现的程序跑飞现象。 在单片机系统中,因为干扰的原因,在非预期的情况
[单片机]
Linux(ARM-S3C2410)内核滴答定时器驱动
/*============================================================*/ 与硬件平台相关 /*============================================================*/ 1):arch/arm/plat-s3c24xx/time.c static void __init s3c2410_timer_init (void) { s3c2410_timer_setup(); setup_irq(IRQ_TIMER4, &s3c2410_timer_irq);
[单片机]
Speed Pixel获益于ARM DesignStart 计划 得ARM7TDMI授权
香港本土fabless公司获益于ARM DesignStart 计划 中国上海,2007年8月13日 ——ARM公司(伦敦证交所:ARM;纳斯达克:ARMHY)今天宣布,位于香港的新兴fabless公司Speed Pixel Technology Ltd. 通过ARM代工厂计划获得ARM7TDMI处理器授权。Speed Pixel拥有强大的终端产品系统设计背景,通过这项协议,公司将能够开发先进的片上系统解决方案,用于中、短距离数字无线视频应用。Speed Pixel通过ARM DesignStart 计划开始其基于ARM技术的设计。在风险基金的支持下,Speed Pixel正加紧完成其产品设计,预计将于2007年第三季度上市。
[焦点新闻]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved