STM32笔记记录

发布者:MysticalEssence最新更新时间:2016-12-30 来源: eefocus关键字:STM32  笔记记录 手机看文章 扫描二维码
随时随地手机看文章

串口记录:

    STM32有好几个串口。比如说STM32F103ZET6有5个串口,串口1的引脚对应的IO为PA9,PA10.PA9,PA10默认功能是GPIO,所以当PA9,PA10引脚作为串口1的TX,RX引脚使用的时候,那就是端口复用。

   复用端口初始化有几个步骤: 
1) GPIO端口时钟使能。要使用到端口复用,当然要使能端口的时钟了。 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); 
2) 复用的外设时钟使能。比如你要将端口PA9,PA10复用为串口,所以要使能串口时钟。 RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); 
3) 端口模式配置。 在IO复用位内置外设功能引脚的时候,必须设置GPIO端口的模式,至于在复用功能下GPIO的模式是怎么对应的,这个可以查看手册。

  所以,我们在使用复用功能的是时候,最少要使能2个时钟: 
        1) GPIO时钟使能 ;2) 复用的外设时钟使能   同时要初始化GPIO以及复用外设功能 

串口设置的一般步骤可以总结为如下几个步骤: 
       1)  串口时钟使能,GPIO时钟使能 
       2)  串口复位 
       3)  GPIO端口模式设置 
       4)  串口参数初始化 
       5)  开启中断并且初始化NVIC(如果需要开启中断才需要这个步骤) 
       6)  使能串口 
       7)  编写中断处理函数

   端口重映射:(暂略)

中断量控制:

     STM32有84个中断,包括16个内核中断和68个可屏蔽中断,具有16级可编程的中断优先级。而我们常用的就是这68个可屏蔽中断,但是STM32的68个可屏蔽中断,在STM32F103系列上面,又只有60个(在107系列才有68个)。

     ISER[2]:ISER全称是:Interrupt Set-Enable Registers,这是一个中断使能寄存器组。

     ICER[2]:全称是:Interrupt Clear-Enable Registers,是一个中断除能寄存器组。

     ISPR[2]:全称是:Interrupt Set-Pending Registers,是一个中断挂起控制寄存器组。

     ICPR[2]:全称是:Interrupt Clear-Pending Registers,是一个中断解挂控制寄存器组。

     IABR[2]:全称是:Active  Bit  Registers,是一个中断激活标志位寄存器组。

     IPR[15]:全称是:Interrupt Priority Registers,是一个中断优先级控制的寄存器组。

     简单介绍一下STM32的中断分组:STM32将中断分为5个组,组0~4。该分组的设置是由SCB->AIRCR寄存器的bit10~8来定义的。

     

 通过这个表,我们就可以清楚的看到组0~4对应的配置关系,例如组设置为3,那么此时所有的60个中断,每个中断的中断优先寄存器的高四位中的最高3位是抢占优先级,低1位是响应优先级。每个中断,你可以设置抢占优先级为0~7,响应优先级为1或0。抢占优先级的级别高于响应优先级。而数值越小所代表的优先级就越高。

  STM32的中断如此之多,配置起来并不容易,因此,我们需要一个强大而方便的中断控制器NVIC (Nested Vectored Interrupt Controller)。NVIC是属于
Cortex内核的器件,不可屏蔽中断 (NMI)和外部中断都由它来处理,而SYSTICK不是由NVIC来控制的。

    使用NVIC来配置中断时,自然想到ST库肯定也已经把它封装成库函数了。对NVIC初始化NVIC_Init() 函数,首先要定义并填充一个NVIC_InitTypeDef 类型的结构体。

    这个结构体有四个成员:
      NVIC_IRQChannel  需要配置的中断向量; 
      NVIC_IRQChannelCmd  使能或关闭相应中断向量的中断响应; 
      NVIC_IRQChannelPreemptionPriority  配置相应中断向量抢占优先级; 
      NVIC_IRQChannelSubPriority  配置相应中断向量的响应优先级;

    首先要用NVIC_IRQChannel参数来选择将要配置的中断向量,用NVIC_IRQChannelCmd参数来进行使能(ENABLE)或关闭(DISABLE)该中断。在NVIC_IRQChannelPreemptionPriority成员要配置中断向量的抢占优先级,在NVIC_IRQChannelSubPriority需要配置中断向量的响应优先级。

   抢占优先级和响应优先级 
   STM32的中断向量具有两个属性,一个为抢占属性,另一个为响应属性,其属性编号越小,表明它的优先级别越高。

   抢占,是指打断其它中断的属性,即因为具有这个属性,会出现嵌套中断(在执行中断服务函数A的过程中被中断B打断,执行完中断服务函数B再继续执行中断服务函数A),抢占属性由NVIC_IRQChannelPreemptionPriority的参数配置。 
   而响应属性则应用在抢占属性相同的情况下,当两个中断向量的抢占优先级相同时,如果两个中断同时到达,则先处理响应优先级高的中断,响应属性由NVIC_IRQChannelSubPriority的参数配置。

   例如:现在有三个中断向量: 
中断向量  抢占优先级  响应优先级 
  A     0      0 
  B      1       0 
  C    1              1

 若内核正在执行C的中断服务函数,则它能被抢占优先级更高的中断A打断,由于B和C的抢占优先级相同,所以C不能被B打断。但如果B和C中断是同时到达的,内核就会首先响应响应优先级别更高的B中断。

  NVIC只可以配置16种 中断向量的优先级,也就是说,抢占优先级和响应优先级的数量由一个4位的数字来决定,把这个4位数字的位数 分配成抢占优先级部分和响应优先级部分。有5组分配方式。

 要配置这些优先级组,可以采用库函数NVIC_PriorityGroupConfig(),可输入的参数为NVIC_PriorityGroup_0   ~  NVIC_PriorityGroup_4,分别为以上介
绍的5种分配组。

  中断优先级设置的步骤: 
  1.  系统运行开始的时候设置中断分组。确定组号,也就是确定抢占优先级和子优先级的分配位数。调用函数为NVIC_PriorityGroupConfig(); 
  2.  设置所用到的中断的中断优先级别。对每个中断调用函数为NVIC_Init();


关键字:STM32  笔记记录 引用地址:STM32笔记记录

上一篇:STM32笔记记录2
下一篇:DSP与STM32区别

推荐阅读最新更新时间:2024-03-16 15:28

关于STM32的计数与延时
Ⅰ关于STM32的计数和延时 在STM32中,具有计数(或计时)功能的模块基本都能实现延时功能。如:系统滴答SysTick、定时器TIM、实时时钟RTC、看门狗WDG。 精确延时一般使用定时器TIM即可实现。当然,是否精确,取决于你的主频(也就是晶振)是否准确,如果主频精确,那么实现的延时也一定精确。 一般来说,常温下实现us微秒级的延时,误差还是挺小的(应该说挺精确)。拿F407,主频168M来说,可以实现几十ns纳秒的延时,如果选用高精度的晶振,误差还是很小的。 总结:想要TIM定时器实现高精确的延时,就需要高精度的晶振。主频精确,那么延时就精确。 ⅡSTM32的TIM定时器 STM32的定时器有3类: 高级定
[单片机]
关于<font color='red'>STM32</font>的计数与延时
STM32外部中断执行过程
一、MCU中断程序执行过程 以MCU裸机程序框架为例,MCU 的主函数是个死循环: 主函数: main(void) { While(1) { //主程序 } } 如果没有中断或异常产生会一直在while(1)里执行主程序代码。当中断产生后,当前执行的任务会被打断,程序跳转到中断处理函数执行,执行完会返回之前的主程序断点处继续执行。 中断处理函数: void IRQ_handler(void) { //中断处理程序 //清除中断标志,否则会不停的进入中断处理程序。 } 在中断处理函数中不要做复杂费时的事情,中断内做的事情尽可能少。 二、中断使用实例 STM32的IO都可以配置成外部中断,但不是同时都可以配成外部中断。需要遵循如下
[单片机]
STM32-NVIC中断管理实现[直接操作寄存器]
cortex-m3支持256个中端,其中包含了16个内核中断,240个外部中断。stm32只有84个中断,包括16个内核中断和68个可屏蔽中断。stm32f103上只有60个中断,f107上才有68个中断。 中断是stm32很基础的一个功能,学会使用中断,才可以更好的使用其他的外设。理解stm32的中断,必须要先从stm32的中断优先级分组是怎么回事。要理解优先级分组,就要先理解什么是先占优先级,和次占优先级。 先占优先级的概念等同于51单片机中的中断。假设有两中断先后触发,已经在执行的中断先占优先级如果没有后触发的中断 先占优先级更高,就会先处理先占优先级高的中断。也就是说又有较高的先占优先级的中断可以打断
[单片机]
STM32】NVIC中断优先级管理(中断向量表)
STM32F1xx官方资料: 《STM32中文参考手册V10》-第9章 中断和事件 Cortex-M3内核支持256个中断,其中包含了16个内核中断(异常)和240个外部中断,并且具有256级的可编程中断设置。但是,STM32并没有使用CM3内核的全部东西,而是只用了它的一部分。STM32有84个中断,包括16个内核中断(异常)和68个可屏蔽中断,具有16级可编程的中断优先级。而STM32F103系列上面,16个内核中断(异常)不变,而可屏蔽中断只有60个(在107系列才有68个)。 注意一下:CM3的外部中断和STM32的外部中断不是一个概念。CM3:除了内核异常之外的都是外部中断;STM32:外部中断EXTI只有6个
[单片机]
【<font color='red'>STM32</font>】NVIC中断优先级管理(中断向量表)
STM32串口DMA容易忽视的问题
博主昨天晚上在STM32串口DMA的问题上纠结了好长时间,所以今天上午写篇博客来谈谈我对串口DMA发送的理解→_→今天主要讨论三个问题:1、什么叫串口DMA 请求;2、串口简要复习;3、串口DMA发送流程。 1、什么叫串口DMA 请求(博主用的是战舰STM32开发板) 说这个问题之前先简单回顾DMA的基本特性。先导出原子哥的PPT内容: DMA全称Direct Memory Access,即直接存储器访问。 DMA传输将数据从一个地址空间复制到另一个地址空间。当CPU初始化这个传输动作,传输动作本身是由DMA控制器来实现和完成的。 STM32有两个DMA控制器(DMA2只存在于大容量产品中),DMA1有7个通道
[单片机]
<font color='red'>STM32</font>串口DMA容易忽视的问题
什么是时钟树架构
2.1 时钟树结构图 STM32属于Cortex-M3内核的单片机,时钟结构比之前的51单片机较复杂的多,根据数据手册,STM32F103的时钟结构如下图所示。 根据上图可以看到,STM32F103系列单片机具有4个时钟源,内部的8MHz时钟发生器,外部的晶体振荡器接口,最高支持16MHz,外部的32.768kHz晶体振荡器接口和内部的40kHz时钟发生器,其中32.768kHz和40kHz主要用于内部RTC时钟脉冲,8MHz的晶振通过PLL时钟倍乘器,将系统总线时钟提高为72MHz。 STM32F103系列内部具有2条外设时钟总线,APB1和APB2,其中APB2的时钟最高可达72MHz,APB1的时钟最高可达36MHz
[单片机]
什么是时钟树架构
stm32 usb_istr.c 文件分析
最近做一个项目,在stm32内部一部分用来存储自己的代码,开辟出一段空间来用来存储FPGA代码。每次开机实现stm32往FPGA写入代码的功能。 向stm32某段空间写入代码的方法: (1)ST_LINK Utility软件 通过JTAG,连接后。载入FPGA的bin文件,改写Start address就可以将代码写入固定的区域。 当然可以用ST-LINK写入任意代码。 (2)用STMFlashDemo软件。 这个官方的串口下载软件,通过系统存储器进行下载。在之前的日志中提到过,不详说。 利用MCUISP下载的时候,会擦出整个芯片。 所以如果将一部分内容存到FLASH中比如(0x0807000~0x0807100),再
[单片机]
<font color='red'>stm32</font> usb_istr.c 文件分析
STM32 DAC的配置与使用
STM32 的 DAC 模块(数字/模拟转换模块)是 12 位数字输入,电压输出型的DAC。DAC 可以配置为 8 位或 12 位模式,也可以与 DMA 控制器配合使用。DAC工作在 12 位模式时,数据可以设置成左对齐或右对齐。DAC 模块有 2 个输出通道,每个通道都有单独的转换器。在双DAC 模式下,2 个通道可以独立地进行转换,也可以同时进行转换并同步地更新 2 个通道的输出。DAC 可以通过引脚输入参考电压 VREF+以获得更精确的转换结果。 STM32 的 DAC 模块主要特点有: ① 2 个 DAC 转换器:每个转换器对应 1 个输出通道 ② 8 位或者 12 位单调输出 ③ 12 位模式下数据左对齐
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved