STM32的IO口输入输出模式的理解

发布者:RadiantExplorer最新更新时间:2017-11-08 来源: eefocus关键字:STM32  IO口  输入输出模式 手机看文章 扫描二维码
随时随地手机看文章

最近在看数据手册的时候,发现在Cortex-M3里,对于GPIO的配置种类有8种之多:


(1)GPIO_Mode_AIN 模拟输入 

(2)GPIO_Mode_IN_FLOATING 浮空输入

(3)GPIO_Mode_IPD 下拉输入

(4)GPIO_Mode_IPU 上拉输入

(5)GPIO_Mode_Out_OD 开漏输出

(6)GPIO_Mode_Out_PP 推挽输出

(7)GPIO_Mode_AF_OD 复用开漏输出

 

(8)GPIO_Mode_AF_PP 复用推挽输出


一、推挽输出:可以输出高、低电平,连接数字器件;推挽结构一般是指两个三极管分别受两个互补信号的控制,总是在一个三极管导通的时候另一个截止。高低电平由IC的电源决定。

推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级既提高电路的负载能力,又提高开关速度。

二、开漏输出:输出端相当于三极管的集电极,要得到高电平状态需要上拉电阻才行。适合于做电流型的驱动,其吸收电流的能力相对强(一般20mA以内)。开漏形式的电路有以下几个特点:

1、利用外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经上拉电阻、MOSFET到GND。IC内部仅需很小的栅极驱动电流。

2、一般来说,开漏是用来连接不同电平的器件,匹配电平用的,因为开漏引脚不连接外部的上拉电阻时,只能输出低电平,如果需要同时具备输出高电平的功能,则需要接上拉电阻,很好的一个优点是通过改变上拉电源的电压,便可以改变传输电平。比如加上上拉电阻就可以提供TTL/CMOS电平输出等。(上拉电阻的阻值决定了逻辑电平转换的速度。阻值越大,速度越低功耗越小,所以负载电阻的选择要兼顾功耗和速度。)

3、开漏输出提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。所以如果对延时有要求,则建议用下降沿输出。

4、可以将多个开漏输出连接到一条线上。通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系,即“线与”。可以简单的理解为:在所有引脚连在一起时,外接一上拉电阻,如果有一个引脚输出为逻辑0,相当于接地,与之并联的回路“相当于被一根导线短路”,所以外电路逻辑电平便为0,只有都为高电平时,与的结果才为逻辑1。

关于推挽输出和开漏输出,最后用一幅最简单的图形来概括:该图中左边的便是推挽输出模式,其中比较器输出高电平时下面的PNP三极管截止,而上面NPN三极管导通,输出电平VS+;当比较器输出低电平时则恰恰相反,PNP三极管导通,输出和地相连,为低电平。右边的则可以理解为开漏输出形式,需要接上拉。

 

三、浮空输入:对于浮空输入,一直没找到很权威的解释,只好从以下图中去理解了

由于浮空输入一般多用于外部按键输入,结合图上的输入部分电路,我理解为浮空输入状态下,IO的电平状态是不确定的,完全由外部输入决定,如果在该引脚悬空的情况下,读取该端口的电平是不确定的。

四、上拉输入/下拉输入/模拟输入:这几个概念很好理解,从字面便能轻易读懂。

五、复用开漏输出、复用推挽输出:可以理解为GPIO口被用作第二功能时的配置情况(即并非作为通用IO口使用)

六、总结在STM32中选用IO模式
       1、浮空输入GPIO_IN_FLOATING ——浮空输入,可以做KEY识别,RX1
       2、带上拉输入GPIO_IPU——IO内部上拉电阻输入
       3、带下拉输入GPIO_IPD—— IO内部下拉电阻输入
       4、模拟输入GPIO_AIN ——应用ADC模拟输入,或者低功耗下省电
       5、开漏输出GPIO_OUT_OD ——IO输出0接GND,IO输出1,悬空,需要外接上拉电阻,才能实现输出高电平。当输出为1时,IO口的状态由上拉电阻拉高电平,但由于是开漏输出模式,这样IO口也就可以由外部电路改变为低电平或不变。可以读IO输入电平变化,实现C51的IO双向功能
       6、推挽输出GPIO_OUT_PP ——IO输出0-接GND, IO输出1 -接VCC,读输入值是未知的
       7、复用功能的推挽输出GPIO_AF_PP ——片内外设功能(I2C的SCL,SDA)
       8、复用功能的开漏输出GPIO_AF_OD——片内外设功能(TX1,MOSI,MISO.SCK.SS)
七、STM32设置实例:
       1、模拟I2C使用开漏输出_OUT_OD,接上拉电阻,能够正确输出0和1;读值时先GPIO_SetBits(GPIOB, GPIO_Pin_0);拉高,然后可以读IO的值;使用GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_0);
       2、如果是无上拉电阻,IO默认是高电平;需要读取IO的值,可以使用带上拉输入_IPU和浮空输入_IN_FLOATING和开漏输出_OUT_OD;

八、通常有5种方式使用某个引脚功能,它们的配置方式如下:
      1、作为普通GPIO输入:根据需要配置该引脚为浮空输入、带弱上拉输入或带弱下拉输入,同时不要使能该引脚对应的所有复用功能模块。
      2、作为普通GPIO输出:根据需要配置该引脚为推挽输出或开漏输出,同时不要使能该引脚对应的所有复用功能模块。
      3、作为普通模拟输入:配置该引脚为模拟输入模式,同时不要使能该引脚对应的所有复用功能模块。
      4、作为内置外设的输入:根据需要配置该引脚为浮空输入、带弱上拉输入或带弱下拉输入,同时使能该引脚对应的某个复用功能模块。
      5、作为内置外设的输出:根据需要配置该引脚为复用推挽输出或复用开漏输出,同时使能该引脚对应的所有复用功能模块。
      注意如果有多个复用功能模块对应同一个引脚,只能使能其中之一,其它模块保持非使能状态。比如要使用STM32F103VBT6的47、48脚的USART3功能,则需要配置47脚为复用推挽输出或复用开漏输出,配置48脚为某种输入模式,同时使能USART3并保持I2C2的非使能状态。如果要使用STM32F103VBT6的47脚作为TIM2_CH3,则需要对TIM2进行重映射,然后再按复用功能的方式配置对应引脚。


关键字:STM32  IO口  输入输出模式 引用地址:STM32的IO口输入输出模式的理解

上一篇:STM32串口接收数据保存到数组——遇到问题及解决方法
下一篇:STM32 普通IO口 模拟串口

推荐阅读最新更新时间:2024-03-16 15:43

移植STM32固件库到IAR
作为嵌入式软件工程师应该有良好的习惯,建project应该层次清晰。 1. 建立一个文件夹用于存放工程,命名为GPIO 2. 打开GPIO文件夹,创建一个子文件夹project(用于存放与工程相关的文件),再创建一个readme.txt(用于对工程的说明,比如说硬件环境和功能) 3. 将ST公司提供的固件库:FWLb中library拷贝到GPIO目录中 4. 打开project,再创建一个文件夹EWARM(存放和开发环境密切相关的内容) 5. 打开STM32固件库:STM32F10xFWLib\FWLib\examples\GPIO\Example1(自己到ST官网上下载) 6. 复制
[单片机]
移植<font color='red'>STM32</font>固件库到IAR
STM32应用-5-LORA模块测试
在一个物品定位项目中,需要用Lora实现物品定位功能。此项目没有选择NBIOT因为客户对于NB需要SIM卡,以及NB的成本并不满意,因此选择更低成本,且无需SIM卡的LORA方式。 硬件连接 其中,Lora模块的管脚连接方式如下: 序号 引脚 引脚方向 备注 1 M0 输入(不可悬空) 和M1配合,决定模块的工作模式(极弱上拉,如不使用可接地) 2 M1 输入(不可悬空) 和M0配合,决定模块的工作模式(极弱上拉,如不使用可接地) 3 RXD 输入 TTL串口输入,连接到外部TXD引脚(可配置为漏极开路或上拉输入,详见手册) 4 TXD 输出 TTL串
[单片机]
<font color='red'>STM32</font>应用-5-LORA模块测试
STM32:外部晶振时钟配置
void SystemClock_Config(void) { RCC_DeInit(); RCC_HSEConfig(RCC_HSE_ON); //INPUT HSE = 24M ErrorStatus HSEStartUpStatus = RCC_WaitForHSEStartUp(); if(HSEStartUpStatus == SUCCESS) { FLASH_PrefetchBufferCmd(ENABLE); //M0 defined FLASH_SetLatency(FLASH_Latency_1); //M0 defined RCC_PREDIV1Config(RCC_PREDIV1_
[单片机]
STM32系列单片机命名规则
示例: STM32 F 100 C 6 T 6 B XXX 1 2 3 4 5 6 7 8 9 从上面的料号可以看出以下信息: ST品牌ARM Cortex-Mx系列内核32位超值型MCU,LQFP -48封装 闪存容量32KB 温度范围-40℃-85℃; 1.产品系列: STM32代表ST品牌Cortex-Mx系列内核(ARM)的32位MCU; 2.产品类型: F:通用快闪(Flash Memory); L:低电压(1.65~3.6V);F类型中F0xx和 F1xx系列为2.0~3.6V; F2xx和F4xx系列为1.8~3.6V;W:无线系统芯片,开发版. 3.产品子系列
[单片机]
<font color='red'>STM32</font>系列单片机命名规则
STM32处理器 RTC分析
前言: 1.博客基于ARM Cortex-M3内核的STM32F103ZET6和标准3.5.0库; 2.如有不足之处,还请多多指教 一 RTC是什么? 1. 从结构上讲就是一个独立的定时器; 2. 从功能上来说就是为系统提供系统掉电不复位的日历时间; RTC分为两个完全能独立的部分:1. APB1接口;2. RTC核心; 功能: (1)APB1总线连接APB1接口并负责驱动APB1接口,接口内部包含一组16位寄存器,可以通过APB1总线对其进行读写操作。 (2)RTC核心由RTC20位预分频模块和32位可编程计数器模块组成; Ⅰ RTC预分频模块包含一个20位的可编程分频器RTC_DIV。预分频模块为32位计数器模块提供时
[单片机]
<font color='red'>STM32</font>处理器 RTC分析
STM32 FSMC驱动TFTLCD 难点解析
本篇文章三个主题:FSMC有关配置、一串字符显示原理、汉字显示原理。。下面进入正题 一、FSMC的有关配置(博主用的是FSMC_A10): 来自别人家的博客http://blog.csdn.net/jxnu_xiaobing/article/details/8718566 FSMC的介绍就不介绍了,网上一大片。我们就讨论讨论为什么用FSMC的地址线与TFTLCD的RS引脚相连?以及我们如何往LCD写数据/命令? FSMC称为可变静态存储控制器。可变:之所以称为“可变”,是由于通过对特殊功能寄存器的设置,FSMC 能够根据不同的外部存储器类型,发出相应的数据/地址/控制信号类型以匹配信号的速度。(这点很重要,后文会
[单片机]
STM32中比较常见的两个问题
问题一 原因:Undefined symbol SystemInit ,翻译过来就是:SystemInit 这个符号没有定义,随后的小括号告诉你了,是在startup_stm32f10x_md.o这个文件里面被提及的,这个.o文件在工程里面并没有,它是一个在编译的时候根据.c/.s文件生成的。所以我们只需要找到工程里面的.s或者.c即可,这里对应这个名字的就是startup_stm32f10x_md.s了。 解决办法:将startup_stm32f10x_md.s中以下三段注释掉就OK了 IMPORT SystemInit LDR
[单片机]
KEIL(MDK)同时兼容STM32和51系列单片机的方法
keil4 方法一: 首先安装KEIL4,然后安装KEIL3到MDK相同目录,安装过的就跳过。然后以管理员身份打开KEIL4,用KEIL4的注册机,注册ARM和C51。 破解结果 方法二: 下面这个方法可以让keilMDK兼容51的工程,只要一个keil就都能编译51和stm32的工程了: 1、安装keilC51,并破解,安装目录 T:keilC51 2、安装keilMDK,并破解,安装目录 T:keilMDK 3、把T:keilC51 里面的 C51 文件夹复制到 T:keilMDK 里 4、把 T:keilC51 里面的 UV4 文件夹复制到 T:keilMDK 里,提示有同名文件都不要
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved