基于超声波传感器的自主移动机器人的探测系统

发布者:技术掌门最新更新时间:2016-01-18 来源: eefocus关键字:超声波传感器  自主移动机器人  探测系统 手机看文章 扫描二维码
随时随地手机看文章
        移动机器人要获得自主行为,其最重要的任务之一是获取关于环境的知识。这是用不同的传感器测量并从那些测量中提取有意义的信息而实现的。视觉、红外、激光、超声波等传感器都在移动机器人中得到实际应用。超声波传感器以其性价比高、硬件实现简单等优点,在移动机器人感知系统中得到了广泛的应用。但是超声波传感器也存在一定的局限性,主要是因为波束角大、方向性差、测距的不稳定性(在非垂直的反射下)等,因此往往采用多

      移动机器人要获得自主行为,其最重要的任务之一是获取关于环境的知识。这是用不同的传感器测量并从那些测量中提取有意义的信息而实现的。视觉、红外、激光、超声波等传感器都在移动机器人中得到实际应用。超声波传感器以其性价比高、硬件实现简单等优点,在移动机器人感知系统中得到了广泛的应用。但是超声波传感器也存在一定的局限性,主要是因为波束角大、方向性差、测距的不稳定性(在非垂直的反射下)等,因此往往采用多个超声波传感器或采用其他传感器来补偿。为了弥补超声波传感器本身的不足,又能提高其获取环境信息的能力,本文设计由一体式超声波传感器与步进电机组成的探测系统。
  1 超声波传感器的探测原理及方法分析

  超声波传感器的基本原理是发送(超声)压力波包,并测量该波包发射和回到接收器所占用的时间。

  其中,L为目标距超声波传感器的距离;c为超声波波速(为了简化说明,本文以下讨论的测量距离时不考虑波速受温度的影响);t为发射到接收的时间间隔。

  由于用超声波测量距离并不是一个点测量。超声波传感器具有一定的扩散特性,发射的超声能量主要集中在主波瓣上,沿着主波轴两侧呈波浪型衰减,左右约30°的扩散角。事实上,式(1)计算度越时间的方式是基于超声波成功、垂直的反射名义下进行的。但对于移动机器人很难保证其自身运动姿态的稳定性,采用超声波传感器固定在移动机器人车身的探测方式,当移动机器人偏离平行墙面时,探测系统往往很难得到实际的距离。另外,超声波这种发散特性在应用于测量障碍物的时候,只能提供目标障碍物的距离信息,而不能提供目标的方向和边界信息。这些缺陷都大大限制了超声波传感器的实际应用和推广。

  本文在通过理论的分析和不断地试验的基础上,采用四相步进电机带动单个一体式超声波传感器旋转的方式,组成一个动态的感测系统。

  2 一体式超声波传感器与步进电机组成的探测系统

  2.1 结构设计

  实物照片如图1所示,超声波传感器焊在PCB板上,板子通过钢管树起,钢管另一端和步进电机轴相连,步进电机固定在机器人底盘下方。传感器控制信号与输出信号通过信号线和车身上的控制板相连。另外在超声波传感器的探头前加一泡沫材料制成的圆台形套筒,上口直径为22 mm,下口直径为16 mm,高20 mm。这样发射波的波束角以及反射波被接收的角度都大大受限制。为了机器人自我调整姿态,需要确定其自身的转动方向和基准位置。因而自制一片由直射式红外光电传感器和转盘组成的简易光电编码器。2个直射式红外光电传感器分布如图2中2个I,Ⅱ所示以180°间隔水平安置在机器人小车车身两侧边的中点连接线上。转盘与转臂连接在同心圆上,如图中外圆所示,1,3刻线间相隔27°;2,1刻线相隔180°,其中1刻线与超声波传感器的中心保持在同一水平线上。I单独导通作为基准坐标,I,Ⅱ同时导通用来判断旋转方向,Ⅱ单通作为机器人沿墙回归时的导航基准。

  通过步进电机带动一体式超声波传感器转动,以传感器中轴垂直于机器人车体的方向作为其自身姿态调整的坐标基准,步进电机采用4相4拍步距角为1.8°,每转1步,超声波传感器检测1次,将测量值通过串口送上位机。

  2.2 探测系统硬件设计

  探测系统硬件主要由超声波发生电路、超声波接收电路,步进电机调速模块等组成。如图3所示,系统的核心为单片机89S51,主要完成信号的发射和接收、控制步进电机、并传送数据给机器人上位机进行处理。

  超声波的发射电路采用单片机ATM89S51的P11口输出发射脉冲,由74HC04作为驱动来连接超声波传感器,74HC04是为了增强其输出电流的能力,提高超声波传感器的发射距离。

  超声波接收处理电路采用集成电路CX20106。CX20106为红外接收专用集成电路,在此利用CX20106作为超声波传感器接收信号的放大检波装置,亦取得良好的效果。CX20106中前置放大器接收到超声波接收探头的反射信号后,对信号进行放大,电压增益约80 dB。然后将信号送到限幅放大器,使其变为矩形脉冲,再由滤波器进行频率选择,滤除干扰信号,由检波器滤掉载频检出指令信号,再经过整形后,由7脚输出低电平。7脚输出的脉冲下降沿通过单片机INT0口输入。如图4所示。

  一体式超声波传感器发射电路与接收电路都用相同的传感器引脚输入/输出,如不将输入/输出隔离开,接收电路与发射电路会相巨影响,采用CMOS双向模拟开关CD4066BE实现发射与接收的隔离。步进电机控制模块,采用环形脉冲分配器L297+双H桥功率集成电路L298的控制方式。单片机的P1.6,P1.7,P2.3分别接L297的CW,clock,enable控制端,控制电机的正反转、时钟信号、启停。

  2.3 探测系统软件设计

  探测系统的软件主要由主程序模块、中断服务程序模块、传感器发射接收模块组成。这里主要对探测系统主程序模块加以说明。主程序流程图如图5所示。

  超声波传感器和步进电机测控模块分属不同的单片机控制,因此感测系统与移动机器人的上位机必须依靠单片机间的I/O口线及串行异步通讯实现。标志位T是用来切换动作,T=0,OFF=0同时满足时,是超声波传感器寻常的探测过程;T=1,OFF=0时是每一个循环测量前调整方位角用;OFF=1是等待下一次动作。计算回波的时间采用定时器T0,因此距离值d=0.334×(TH0×256+TL0)/2。每测完1次,给步进电机1个触发脉冲。然后判断下一个动作,是做传感器探测还是机器人自身方位角调整,这样又进入一个新的循环。

  3 探测系统在移动机器人上的实验与应用

  3.1 寻找离墙最近点

  本文在寻找离墙最近点的设计思想足基于超声波测距。选择时间度越式的测距方法,通过对接收回波阈值的设定和探头前加一具有吸音作用的套筒,来限制超声波传感器接收范围。实验所测在距离75 cm时其发射波束角在±20°左右,能接收反射波的有效角度大约在±40°范围内。

  超声波传感器的近似圆锥形的波束,决定了其每一次所测距离是最近点的反射距离。如图3所示,当波束角度即使偏离到虚线所示,其实际所得距离仍旧是沿波束中心线所测的值。按理论上说在发射波束角度内所测的距离应该是相同的,但由于超声波传感器起震时间、以及接收阈值的设置,包括墙面的反射情况等都会对距离的测量造成一定的影响。由实验测得,当在一定的角度(约±20°)内,其测量的距离值变化不明显,其相邻值比较接近(不超过2 mm)。当偏角继续增大时,相邻测量值变化也明显增大。因而一种方法就是利用这2个临界点,来找寻其波束与墙垂直的角度(即与墙距离最近点),步进电机带动超声波旋转找寻这2个临界点。当连续检测到两相邻的值低于2 mm时,认为已进入稳定区,则前后出现变化的点设为临界点,在这临界点内的所有点都记下来,然后求取中点,中点位置即是墙面与超声波传感器的最近点。如图6所示为其中一组所测数据,在72°~108°内,是距离测量的稳定区域,而在这之外,所测距离的相邻偏差超过8 mm,而且随着角度的旋向两边时将进一步拉大。在50 cm与200 cm内改变一体式超声波传感器与墙面距离进行实验,其结果与墙面垂直角度所测误差限制在2个步距角内。

  3.2 探测系统应用于机器人沿墙导航

  自主式移动机器人是在运动过程中探测当前环境的信息。每次探测的距离信息都以当前机器人的运动姿态为前提来测量。而在沿墙直线行走过程中,机器人是通过测距和自身姿态的共同感知保证运行轨迹的准确性。超声波测距已被广泛运用,在试验超声波探测角度与测距的关系后,则可以根据计算最近点的方法用超声波传感器来测量车身的方位角(确定自身姿态)。所测最近点是机器人实际与墙面的距离,通过简易编码器上的直射红外传感器1来确定机器人的基准坐标,根据步进电机每一步走过时存储的信息来计算最近点。在基准坐标和最近点间,用步进电机所走过的角度确定机器人与墙面的偏角,然后偏角传达给车轮驱动控制系统以调整方位角。

  3.3 搜寻障碍物

  采用步进电机带动超声波传感器旋转的方式在功能上近似于多传感器检测。移动机器人通常采用周身围绕固定多个超声波传感器来获取更多的信息,从而增加搜索障碍物的范围,确定目标方向和边界信息。与之相比,采用旋转的方式的一个优点,就是可以根据障碍物的紧密程度自动调整检测的密度。采用增加传感器的数量是受自身条件限制的,而旋转方式的紧密只和步进电机的步距角相关。检测密度的增加可以大大提高对角度的分辨力,从而加强对目标方向和边界信息的确定。

  4 结 语

  本系统是对超声波传感器功能上的一次延伸,是对移动机器人的现有探测系统的一个很好的补充。其在实验应用中得到充分的展示,他在障碍物探测和机器人位姿的调整上具有一定的实用性。但该方法在实时性、精确性上有待进一步提高。

 

关键字:超声波传感器  自主移动机器人  探测系统 引用地址:基于超声波传感器的自主移动机器人的探测系统

上一篇:51单片机模拟PS2协议制作5X5矩阵工业键盘
下一篇:51单片机的简介——特殊功能寄存器(SFR)

推荐阅读最新更新时间:2024-03-16 14:44

基于超声波传感器的车钩高度测量系统
1. 引言 货车、客车车辆在补修、段修和厂修时必须检测车钩到轨道的垂直距离,为了便于连挂和行车安全必须规定车钩高度(车钩中心线到铁轨上表面的垂直距离)在一定的范围内[1 (客车:880mm,允许+10mm,-5mm 的误差;货车:880mm, 10mm 的误差)。车辆在进行段修时,由于要对转向架、车钩若测量不准,将严重影响列车的行车安全。而目前我国铁路各车辆段均采用比较原始的手工测量方法,误差大,效率低,费时又费力,无法满足铁路列车高速重载的发展要求 [2 。针对以上问题,本文阐述了车钩高度超声波测量系统的功能原理及软硬件设计。 2. 工作原理 测量系统采用超声波传感器,自车钩中心线向下竖直发射超声波,并由放置在铁轨面的的薄
[测试测量]
基于<font color='red'>超声波传感器</font>的车钩高度测量系统
惯性传感器加身,移动机器人自主工作不犯愁
Adept MobileRobots项目经理Seth Allen认为,地面 机器人 系统必须常常处理"枯燥、肮脏、危险"的工作。换言之,机器人系统通常用于人工介入成本过高、危险过大或者效率过低的任务。在许多情况下,机器人平台的自主工作能力是一项极为重要的特性,即通过导航系统来监视并控制机器人从一个位置移到下一位置的运动。管理位置和运动时的精度是实现高效自主工作的关键因素,MEMS(微机电系统)陀螺仪可提供反馈检测机制, 对优化导航系统性能非常有用。   图1中所示的Seekur机器人系统就是一个采用先进MEMS器件来改善导航性能的自主系统。   图1. Adept MobileRobots公司的Seekur系统。   机器人导
[嵌入式]
如何利用超声波传感器制作一个轮式自平衡机器人
这是一个轮式自平衡机器人。由 UNO 供电并由超声波平衡,同时它能够自我保持垂直平衡。 动力源 动力由两个齿轮直流电机为机器人提供。 构建 第一步:将连接到齿轮直流电机 现在我们将轮子连接到的轴上。 第二步:准备 PVC T 型接头 这是PVC管的T型接头。我们将用它来固定电机,将从顶部的孔中出来。 第三步:通过 T 形接头为电机接线 在将电机固定在该管道中之前,我们必须将它们接线。我们将从顶孔穿过 4 根电线。两端分体,每台电机2根线。 第四步:通过顶孔拉线 我们将从 T 型接头拉回电线,以便电机就位。 第五步:将电机固定到位 现在我们已将电机固
[机器人]
AGV机器人技术发展优势及超声波传感器在AGV机器人中的应用详解
AGV机器人作为现代存储体系的关键设备之一,有自动化程度高,灵敏度高,安全等特点,大大改善了工作条件和环境,提高了自动化生产水平,可以有效地解放劳动生产力,减轻工人的劳动强度,节省人力、物力和财力。 得益于在物流行业、工厂生产线以及服务领域越来越多的落地应用,移动机器人行业处于一片广阔的蓝海中,很可能成为下一个风口。随着机器人性能的不断完善,物流和3C行业等迅速发展,AGV的应用范围也大幅度扩展,已广泛应用于工业、农业、交通运输、医疗、服务等领域。 AGV机器人作为轮式移动机器人的分支,它最关键的技术就是定位和导航。随着各种技术的发展,AGV的导引技术也在不断得到提升。为提升AGV机器人技术以及AGV小车在运行过程的安全工采网
[机器人]
麻省理工研发全新无线智能探测系统,有望助力帕金森患者的治疗
通过无线电波与人工智能的结合,麻省理工学院的研究人员研发了一个全新的探测系统:可以看到墙另一边的人移动的骨骼状图像。虽然这听起来像是特警队在破门而入之前希望拥有的技术,但它已经以一种令人惊讶的方式被用于监控帕金森症患者在家中的活动。 该项目的高级研究员、麻省理工学院电子工程和计算机科学教授迪娜·卡塔比(Dina Katabi)说:“人们对这种技术的兴趣可以追溯到几十年前,美国国防部高级研究计划局(DARPA)曾有一个重大项目,试图使用无线信号探测位于墙壁后的人。但在这项最新的研究之前,这些系统所能做的只是显示一个人在墙后的斑点状图形。” 如今,这项技术能够更精确的显示信息:它能把场景中的人描绘成像骷髅一样的木棍,同时显示出他们在
[医疗电子]
MiR250自主移动机器人,刷新内部物流标杆的水平
(文章来源:物流指闻) R是国际移动机器人专家,自2017 年开始坚持每年发布一款全新的机器人产品,不断为内部物流自动化开辟新的可能性。今年,这家来自丹麦的协作移动机器人制造商再接再厉,推出了更安全、更敏捷的MiR250,是目前MiR产品系列中最快自主移动机器人,再次刷新了内部物流的标杆水平。创新型 MiR250 采用打造,可以在人流涌动的环境中顺畅、高效地导航。 名傲移动机器人(Mobile Industrial Robots,以下简称为MiR)于MODEX物流贸易展览会(美国亚特兰大,2020年3月9日至12日)上发布了新款 MiR250自主移动机器人,意味着工业、物流和医疗保健行业迎来了优化物流的全新。新款机器人每小
[机器人]
澳洲研发汽车牌照自动化探测系统 可在事故发生前识别危险驾驶员
未来,新型汽车牌照识别技术可能可以在问题出现之前,就识别出危险驾驶员。据外媒报道,澳大利亚埃迪斯科文大学(Edith Cowan University)的Shams Islam博士与马来西亚国立大学(University of Malaysia)和墨尔本大学(University of Melbourne)的同事合作,设计了一种自动化系统,可以探测汽车牌照。 (图片来源:埃迪斯科文大学) 研究发现,与现有的方法相比,新方法具有高度的准确性以及快速的处理速度,从而为实时反馈道路情况提供了机会,改变了监控交通的方式。 研究人员表示,这是首次研发能够在任何情况下都可成功识别车牌的技术,即使在昏暗的光线下或者大雨中,都可以
[汽车电子]
澳洲研发汽车牌照自动化<font color='red'>探测系统</font> 可在事故发生前识别危险驾驶员
微控制和器超声波技术在汽车倒车检测系统中的应用
  微控制和器超声波技术在汽车倒车检测系统中的应用    摘要: 主要介绍用超声波传感器系统与Microchip的PIC l8F8490微控制器解决汽车倒车障碍检测系统方案,并对发送与接收超声波传感器系统构成与方式及提高检测系统性能作分析说明。    关键词: 盲区 微控制器 超声波传感器 换能器    倒车障碍检测系统对盲区内障碍物的探测   倒车障碍检测系统所采用的超声波传感器技术可以探测到附近的障碍物,为驾驶员提供倒车警告和辅助泊车功能,其原理是利用超声波探测倒车路径上或附近存在的任何障碍物,并及时发出警告。所设计的检测系统可以同时提供声光并茂的听觉和视觉警告,其警告表示是探测到了在盲区内障碍物的距离和方向。这样,在
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved