大电流变流装置过电压智能保护模块设计

发布者:psi33最新更新时间:2021-04-29 来源: eefocus关键字:大电流 手机看文章 扫描二维码
随时随地手机看文章

引言


大电流直流电是冶金、化工及有色加工行业必不可少的供电电源,如今在国内比较常用的为以饱和电抗器调压、整流变压器降压整流管整流的方案和以整流变压器直接降压、晶闸管整流的方案,由于这两种方案都属于对工频整流的方案,使用中并联电力电子器件多,系统庞大,其快速有效的保护一直较难,现多用的是分散保护的方案,不便于集成,同时抗干扰性能差,现场调试整定困难。为此本文主要针对大电流直流电力电子变流装置保护模块中具有代表性的过电压保护设计了一种集过压检测和过压动作于一身的智能保护模块,其具有结构简单、响应迅速、保护门限宽和便于集成的优点。


过压分析


在大电流直流电力电子变流装置中,电力电子器件对电压非常敏感,一旦外加电压超过器件所允许的最大额定值,器件将立即损坏。整流装置中造成过电压的原因很多,可分为外因和内因两种情况。一般外因包括常见的自然灾害,比如雷电造成的过电压,其都可通过良好的接地避免。但是由内因引起的过电压是不可避免的,其归为四类:合闸时的操作过电压、分闸时的操作过电压、器件换流过电压和逆变器换流失败过电压。


合闸操作过电压是其一、二次绕组间存在分布电容,一次侧合闸瞬间,高压通过分布电容耦合到二次侧,使二次侧出现过电压。分闸操作过电压是当整流变压器工作时,其励磁电感有储能作用,如果变压器空载或负载阻抗较高,分断一次侧开关,储存的能量无法通过负载释放,只能通过二次侧的分布电容释放,在振荡过程中耗尽储能,且在励磁电流峰值分闸过电压最严重。器件换流过电压主要是指晶闸管换流过电压,晶闸管换流时,器件内各PN结层残存载流子复合产生反电流。此电流在极短时间内降至接近于零的数值,则有较大的Ldi/dt电压足以烧坏晶闸管。逆变器换流失败过电压,即变流装置在AC-DC中未达到预期目标,造成局部或整体过电压。


这些导致整流装置过电压的因素不可能从根本上消除,但可以有效利用快速感应器件及合理的调理电路通过人工智能模块实现过电压保护的功能。


过压保护模块的设计


传统的大电流变流装置过压保护主要采用分离器件的保护,比如排气式避雷器、阀型避雷器或金属熔断丝等,国外已经开发出半导体熔断丝,其具有可恢复性,但是价格昂贵。本文通过综合考虑,选用了目前国内外性价比较高的51系列单片机作为主控制核心,结合具有快速响应的电压互感器和相关调理电路组成整个变流装置的过压保护模块。


过压检测电路


过压检测主要是在整流装置中并联电压互感器,通过整流滤波电路对检测到的电压进行处理,其电路图如图1中A部分所示。电压互感器是一个带铁心的变压器,其主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个变化电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就感生出电压U2。改变一次或二次绕组的匝数,可以使一、二次侧电压比发生变化,这样就可组成不同比的电压互感器。文中的电压互感器将输入高电压依匝比降为低电压输出,其一次侧接在一次系统,二次侧接信号处理电路。其工作原理与变压器相同,基本结构也是铁心和原、副绕组。其特点是容量很小且比较恒定,正常运行时接近于空载状态,一次侧电流和二次侧电流都比较小。根据设计,电压互感器的输入端电压U1即为整个保护装置的检测电压,其信号处理后的输出电压U3即为检测到的电压。U3将与保护门限电压UREF进行比较,若U3<UREF,则输出为高电平;若U3>UREF,则输出为低电平;以此方便后续单片机进行判断。保护门限电压UREF即为参考电压,其是直流电压,故在U3的整流滤波处理过程中,结合输入输出端电压参数,以及回路中可承受最大输出电流小于10mA,可以选择低于0.3W的整流桥及需要过滤低频谐波的滤波电容C1≥0.144/(f×R1×r),其中r一般为0.002,过滤高频谐波的电容C2为低值瓷介质电容。

图1 过压智能保护模块电路图


过压比较电路


电压互感器检测到的电压信号必须经过比较电路转化为单片机能够识别的信号,而且快速准确的判断过压与否关系到整个保护模块实际存在的必要性,是过压保护模块的关键。


这里选择LM339电压比较器,其具体电路如图1中B部分所示。图中同相端接参考电压UREF,异相端接检测到电压U3,其中R2和R3串联提供UREF电压,且R3是一个可变电位器可以改变UREF的大小。在1/4LM339的输出端用三极管M5构成了一个正反馈回路,这样就形成了一个反相输入迟滞比较器,其上门限电压UT+和下门限电压UT-分别如公式1-1和公式1-2所示:


和 (1-2)


故回差电压为:(1-2)


其中r为三极管处于放大区的内阻可以忽略,UOH为LM339输出高电平5V,UOL为输出低电平0V,根据设计要求R3调为3KΩ,由此可得=5V。假设整流装置输入交流有效电压U1为209V,且上下波动10%都为安全电压,此时电压互感器检测到的电压U3小于2.6V,且小于参考电压UREF,输出开路,过电压保护模块不动作,作为正反馈的射极跟随器三极管M5导通UREF=2.8V。当U1增加到230V时,U3大于2.8V,输出为低电平,过电压保护模块动作,单片机输出封锁脉冲,且M5截止UREF=2.7V,促使U3更大于UREF,这时翻转后的状态极为稳定,避免了过电压附近电压波动而引起的不稳定现象。由于产生了一定的回差,过电压保护动作后,整流装置的输入电压U1必须降到230-5=225V时,即U3<UREF,整流装置才能恢复正常。


脉冲输出控制


大电流整流装置主要是通过晶闸管整流,而晶闸管的导通是需要触发脉冲的,这里对触发脉冲的控制是基于单片机产生晶闸管触发脉冲。因此,控制了晶闸管触发脉冲的产生就控制住了整个整流装置的输出,也就达到了过压保护的目的。


图2 脉冲输出控制程序流程图


单片机是一种微型计算机,可以通过编程实现相应的功能。文中通过51系列单片机的P1.0口控制晶闸管触发脉冲输出的P0口,可以将电压比较器的输出端U4与单片机的P1.0口相接,中间用一个PNP型三极管进行电平转换如图1中C部分所示。当U4为高电平时,单片机P1.0口有内置高阻上拉电阻,复位后P1.0口为高电平,三极管M6截止;当U4为低电平时,三极管M6导通,并将P1.0口拉为低电平,此时P0口被强行复位。其脉冲输出控制程序流程图如图2所示,确保了整流装置过电压时晶闸管触发脉冲能够及时关断,当电压恢复到安全值后能够自动运行。


实验结果


通过电压比较电路实验波形的观察发现其输出高低电平的转换时间为微秒级,达到保护模块设计要求的响应时间。


由图3实验波形可以发现,当输入电压有效值低于U1=209V,晶闸管输出脉冲正常,整流设备正常工作;当输入电压有效值U1=212V,晶闸管输出脉冲被关断,整流设备停止工作;当输入电压有效值降为U1=204V,晶闸管输出脉冲正常,整流设备重新正常工作。


图3 过压前后控制触发脉冲输出波形


结论


本文设计了一种大电流变流装置的过电压智能保护模块,分析了导致过电压的原因,结合整流装置过压特性提出利用性价比较高的51系列单片机作为控制核心,实现了智能保护的目的。通过实验发现整个过压保护模块的响应时间为微秒级,满足过压保护响应时间的要求。通过实验波形的比较,验证了电压比较电路的回差电压为5V,达到了预期保护迟滞的设定。通过改变R3的阻值可以实现不同门限的过压保护,而且实验证明了该智能保护模块是可行的。

关键字:大电流 引用地址:大电流变流装置过电压智能保护模块设计

上一篇:基于虚拟存储的嵌入式存储系统的设计方法
下一篇:51单片机演示<世上只有妈妈好>音乐

推荐阅读最新更新时间:2024-11-06 10:39

HT7180 3.7V升12V/2A内置MOS大电流升压IC解决方案
电源电路是电子产品中必不可少的部分。然而不同的器件或者模块工作电压不一样,所以DC-DC电压转换电路应用中十分常见。例如便携式电子产品,一般都内置电池,如果是单节锂电3.7V供电,通过DC-DC升压电路,从3.7V升压到5V、8V、9V、12V等再给其他电路供电。 升压电路属于开关型电路,最关心的就是输入MOS开关管电流、输出升压值、升压输出电流或者输出功率以及效率。70W以下内置MOS管单片芯片DC-DC升压集成电路已经很成熟。但是针对不同应用领域相对应最适合的产品,或者在有限的应用条件下性能最优化还是值得研究的课题。比如市面SOT23封装的DC-DC升压IC从3.7V升压到12V,电压够但是电流不够;SOP8封装的DC-D
[电源管理]
HT7180  3.7V升12V/2A内置MOS<font color='red'>大电流</font>升压IC解决方案
大电流便携式DC/DC变换中MOSFET功耗的计算
引言 众所周知,今天的便携式电源设计者所面临的最严峻挑战就是为当今的高性能CPU提供电源。近年来,内核CPU所需的电源电流每两年就翻一番,即便携式内核CPU电源电流需求会高达40A之大,而电压在0.9V和1.75V之间。事实上,尽管电流需求在稳步增长,而留给电源的空间却并没有增加,这个现实已达到甚至超出了在热设计方面的极限。 对于如此大电流的电源,通常将其分割为两个或多相,即每一相提供15A到25A,例如,将一个40A电源变成了两个20A电源。虽然可以使元器件的选择更容易,但是并没有额外增加板上或环境空间,对于减轻热设计的工作基本上没有多大帮助。这是因为在设计大电流电源时,MOSFET是最难确定的器件。这一点在笔记本电脑中尤
[电源管理]
浅析高性能和高密度大电流POL设计解决方案
  所有的电子产品都像我们这个世界一样正在不断缩小。随着电路功能和集成度的提高,PCB板的空间变得弥足珍贵。主要的板空间要分配给应用的内核功能,这些应用包括微处理器、FPGA、ASIC以及与其相关的高速 数据通道和支持元件。虽然设计者并不想这样做,但是电源却必须压缩到剩下的有限空间之内。功能和密度的增加,耗电也相应增加。这就为电源设计者带来了一个很大的挑战,即如何以更小的占位提供更高的电源?   答案说起来非常简单:提高效率并同时提高开关频率。而实际上,这却是一个很难解决的问题,因为更高的效率和更高开关频率是互相排斥的。尽管如此,IR公司IR3847大电流负载点(POL )集成稳压器的设计者还是开发出来了采用集成型MOSFET的D
[电源管理]
浅析高性能和高密度<font color='red'>大电流</font>POL设计解决方案
小尺寸带来高效率,Dialog全新大电流DC-DC降压转换器问市
电池管理、AC/DC电源转换、Wi-Fi、低功耗蓝牙(BLE)、工业IC供应商Dialog半导体公司宣布,推出最新高效大电流汽车级步降DC-DC(降压)转换器DA913X-A产品系列。 高度集成的DA913X-A系列器件所需的外部元件比竞争方案更少,实现更低的BOM成本和更小的解决方案尺寸。该系列器件的工作效率超过90%,可在许多汽车系统设计中降低大电流供电的散热挑战,包括车载信息娱乐系统、导航系统、遥测、高级驾驶辅助系统(ADAS)等。 DA913X-A系列包含三个器件,分别配置为单或双输出降压转换器。DA9130-A为单通道、双相降压转换器,提供最高10A输出电流。DA9131-A集成了两个单相降压转换器,各提供
[电源管理]
小尺寸带来高效率,Dialog全新<font color='red'>大电流</font>DC-DC降压转换器问市
工程师教你有效设计高效率大电流直流稳压电源
许多电子发烧友们在DIY时,常常需要一个能输出大电流、性能优良的 直流稳压电源 ,并且希望这个直流稳压电源还能够比较方便的根据自己的需要随时改变输出电压的大小。如何才能拥有一款这样的直流稳压电源呢? 本文介绍一款采用MP1593制作的DC-DC稳压电源,这款DC-DC稳压电源的体积很小,但它能提供2A 甚至最高达3A 的输出电流,并且其性能指标非常好,完全可以满足电子爱好者们在DIY 时的要求,下面就原理及实际制作等方面的一些问题做一个详细的介绍。 MP1593 的结构及工作原理简介 MP1593 是美国MPS 公司(Monolithic PowerSystems,Inc) 研制生产的一款降压型(Step -down)DC-D
[电源管理]
工程师教你有效设计高效率<font color='red'>大电流</font>直流稳压电源
高频电流探头的最大电流限制
电流探头有三个最大电流额定值:脉冲电流、连续电流。超过这些额定值中的任何一个都会使探头铁芯饱和,从而使铁芯磁化并导致测量误差。 最大脉冲电流(ImaxP)是探测器能够精确测量脉冲电流的最大峰值,无论脉冲持续时间有多短(在带宽限制内)。 最大连续电流(ImaxC)是在直流或特定交流频率下可以连续测量的最大电流。最大连续电流值随频率减小;随着频率的增加,最大连续电流额定值减小。 安培-秒积是脉冲电流的最大宽度,当脉冲振幅在最大连续和最大脉冲电流规格之间时测量。最大连续规格随频率而变化。 要确定测量值是否超过安培秒,必须首先确定最大允许脉冲宽度或最大允许脉冲振幅。 注意:在测量超过探头的最大连续电流、最大脉冲电流或安培-
[测试测量]
高频电流探头的最<font color='red'>大电流</font>限制
Vishay推出新款超薄、大电流、汽车级电感器
器件采用404外形尺寸,通过AEC-Q200认证,在1cm内可使电场减小-20dB。 宾夕法尼亚、MALVERN — 2014 年 12 月16 日 — 日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,发布新款汽车级的超薄、大电流电感器---IHLE-4040DC-5A,该电感器采用可减少EMI的整体e屏蔽层和紧凑的4040外形尺寸。Vishay Dale IHLE-4040DC-5A能够遏制在镀锡的铜整体屏蔽里与EMI有关的电场,把整体的屏蔽连到地时,在1cm内(电感器的中心位置上面)可以使电场最多减小-20dB,在汽车和其他应用里不需要对电感器采取单独的板级屏蔽
[汽车电子]
Vishay推出新款超薄、<font color='red'>大电流</font>、汽车级电感器
低压大电流开关电源的设计
1 引言 开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。从上世纪90年代以来开关电源相继进入各种电子、电器设备领域,计算机、程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源。随着电源技术的发展,低电压,大电流的开关电源因其技术含量高,应用广,越来越受到人们重视。在开关电源中,正激和反激式有着电路拓扑简单,输入输出电气隔离等优点,广泛应用于中小功率电源变换场合。跟反激式相比,正激式变换器变压器铜损较低,同时,正激式电路副边纹波电压电流衰减比反激式明显,因此,一般认为正激式变换器适用在低压,大电流,功率较大的场合。 2 基本技术 2.1 有源钳位技术
[电源管理]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved