一、硬件连接
1、电压信号处理电路仿真
图1.1.1
-----------------------------------------------------------
2、单片机连接
主控MCU:STM32F103ZET6,LM293输出连接在PB0上检测电压信号的频率,如图1.1.1与图1.2.1所示。
图1.2.1
图1.2.2
如图1.2.2所示,注意其中的TIM3_CH2N是PWM捕获比较输出,TIM3_CH3才是输入捕获。
图1.2.3
-----------------------------------------------------------------------------------------------------------------
二、程序部分
这里通过STM32输入捕获或FFT转换两种方式实现频率的测量,在实际工程中都已实现。STM32输入捕获信号幅度小于2V时,单片机检测不到跳变沿,需硬件对信号适当处理(如图1.1.1)。PB0/ADC8也可用ADC读信号电压值,ADC值为0时进行记录,再次为0就相当于经过了半个周期。计算两次ADC为0的时间差,就可以计算出信号的频率,这种方法不会受限于信号幅度的限制。
--------------------------------
1、通过STM32输入捕获
下面的程序采集PB0口(图1.2.1)的电压信号,因频率较低,且要求继电器出口时间小于35mS,采用测周法计算频率。给出主要部分定时器配置与定时器中断程序。因上升沿示波器测试并不陡峭(图1.1.1仿真图也可看出),故取一周波两次下降沿。
注意后期的处理程序必须捕获到两个下降沿的前提下,才能作相应的处理,采集程序未完成,处理会出错。
图2.1.1
1)定时器配置
void adc_TIM_Init(void)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; //定时器
GPIO_InitTypeDef GPIO_InitStructure; //端口
TIM_ICInitTypeDef TIM_ICInitStructure; //输入捕获
//初始化GPIO口
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IN_FLOATING; //浮空输入模式
GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0;
GPIO_Init(GPIOB,&GPIO_InitStructure);
GPIO_SetBits(GPIOB,GPIO_Pin_0);
//使能时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE); //TIM3
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB|RCC_APB2Periph_AFIO,ENABLE);
//初始化TIM3定时
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Prescaler = 17; //1MHz计数脉冲 1uS
TIM_TimeBaseStructure.TIM_Period = 65535;
TIM_TimeBaseStructure.TIM_ClockDivision = 0x0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
//初始化TIM3 Channel3输入捕获IC(Input Capture)
TIM_ICInitStructure.TIM_Channel=TIM_Channel_3;
TIM_ICInitStructure.TIM_ICPolarity=TIM_ICPolarity_Falling; //下降沿捕获
TIM_ICInitStructure.TIM_ICSelection=TIM_ICSelection_DirectTI; //管脚与寄存器一一对应
TIM_ICInitStructure.TIM_ICPrescaler=TIM_ICPSC_DIV1; //有下降沿就捕获,不分频
TIM_ICInitStructure.TIM_ICFilter=0x00; //不打开输入捕获滤波器
TIM_ICInit(TIM3,&TIM_ICInitStructure);
TIM_ITConfig(TIM3,TIM_IT_Update,ENABLE); //允许定时中断
TIM_ITConfig(TIM3,TIM_IT_CC3,ENABLE); //允许CC3捕获中断
TIM_Cmd(TIM3,ENABLE);
…………
}
--------------------------------
2)定时溢出和输入捕获中断处理
void TIM3_IRQHandler(void) //TIM3
{
static u8 CapStatus=0; //捕获状态,CapStatus=0未捕获到第1个下降沿,CapStatus=1捕获到第1个下降沿
static u8 TIM3_CH3_Capture=0; //总的计数次数
u32 FrequencyTemp=0;
if(TIM_GetITStatus(TIM3,TIM_IT_Update)) //TIM3定时溢出更新中断
{
TIM_ClearITPendingBit(TIM3,TIM_IT_Update); //清除中断标志位
if(CapStatus)
TIM3_CH3_Capture++;
}
if(TIM_GetITStatus(TIM3,TIM_IT_CC3)) //RB0输入捕获中断
{
TIM_ClearITPendingBit(TIM3,TIM_IT_CC3); //清除中断标志位
if(!CapStatus)
{
CapStatus=1;
TIM_SetCounter(TIM3,0); //计数器清零
}
else if(CapStatus) //已经捕获到第1个下降沿
{
CapStatus=0;
FrequencyTemp=TIM_GetCapture3(TIM3)+TIM3_CH3_Capture*65536; //计算两个下降沿总计数
TIM3_CH3_Capture=0; //溢出次数清零
TIM_SetCounter(TIM3,0); //计数器清零
FrequencyValue=400000000/FrequencyTemp; //计算频率,比如5000,单位0.01Hz
}
}
}
图2.1.2
图2.1.3
-----------------------------------------------------------
2、通过FFT实现
下面是采集PC1口(图1.2.1)的小通道电流信号,计算频率,其固件具ST官方DSP库实现FFT,测试固件移步:FFT(具ST官方DSP库实现)。
--------------------------------
1)用STM32F103自带的12位ADC进行数据采集,定时器触发ADC采集,DMA搬运,定时器时间自行设置,采样频率已知。此部分相关内容移步:AD转换汇总(STM32、取平均、过采样)。
--------------------------------
2)通过FFT可以准确测量电压值、电流值、有功功率、无功功率、频率、谐波分量(比如显示2~32次谐波)、相角(电压与电流夹角)。互感器二次值精确到小数点后2位无压力,电流范围大,硬件增加大小通道、程序分别采集即可;涌流二次谐波含量最多,故可实现二次谐波制动,相关介绍移步:电力-涌流抑制与谐波。
图2.2.1
-----------------------------------------------------------
3、屏显驱动介绍
移步:12864液晶显示原理(C程序)。
-----------------------------------------------------------------------------------------------------------------
附录1:测频法计算频率
网上找的资料,不保证正确性,没有实际测试过,仅供参考。
通过在一定时间内检测跳边沿的个数可计算出频率 频率=上升沿或下降沿个数/统计时间。
-----------------------------------------------------------
方法1:利用外部中断统计跳边沿个数,配置一个定时器每隔一定时间对频率进行计算。部分代码如下。
void exti_init() //外部中断初始化函数
{
GPIO_InitTypeDef GPIO_InitStructure;
EXTI_InitTypeDef EXTI_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC,ENABLE);
GPIO_InitStructure.GPIO_Pin=GPIO_Pin_2;
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IN_FLOATING;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_Init(GPIOC,&GPIO_InitStructure);
GPIO_EXTILineConfig(GPIO_PortSourceGPIOC, GPIO_PinSource2);//选择GPIO引脚用作外部中段线路
//此处一定要记住给端口管脚加上中断外部线路
EXTI_InitStructure.EXTI_Line=EXTI_Line2;
EXTI_InitStructure.EXTI_Mode=EXTI_Mode_Interrupt;
EXTI_InitStructure.EXTI_Trigger=EXTI_Trigger_Falling; //下降沿进中断
EXTI_InitStructure.EXTI_LineCmd = ENABLE;
EXTI_Init(&EXTI_InitStructure);
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);
NVIC_InitStructure.NVIC_IRQChannel = EXTI2_IRQn; //打开EXTI2的全局中断
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; //设置优先级
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能
NVIC_Init(&NVIC_InitStructure);
}
外部中断中断函数
void EXTI2_IRQHandler()
{
if(EXTI_GetITStatus(EXTI_Line2)==SET)
{
EXTI_ClearITPendingBit(EXTI_Line0);//清中断
if(GPIO_ReadInputDataBit(GPIOC,GPIO_Pin_2)==Bit_RESET) //确定沿
{
cnt++;
}
}
}
定时器中断函数
void TIM3_IRQHandler()
{
frequent=cnt; //定时器设置时间为1s时
cnt=0; //清零计数cnt
TIM_ClearITPendingBit(TIM3,TIM_IT_Update); //清标志位
}
-----------------------------------------------------------
方法2:采用定时器外部计数的方法,另外一个定时器负责每隔一段时间计算频率,部分代码如下。
void time_init()
{
GPIO_InitTypeDef GPIO_InitStructure;
TIM_TimeBaseInitTypeDef TIM2_TimeBaseInitStructure;
TIM_TimeBaseInitTypeDef TIM3_TimeBaseInitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);
GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0;
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPU;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_Init(GPIOA,&GPIO_InitStructure);
TIM_ClearITPendingBit(TIM2,TIM_IT_Update);//清除TIM2中断标志位
TIM2_TimeBaseInitStructure.TIM_Period = 0xFFFF;//设置自动重装载值
TIM2_TimeBaseInitStructure.TIM_Prescaler = 0;//设置分频
TIM2_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM2_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;//向上计数
TIM_TimeBaseInit(TIM2,&TIM2_TimeBaseInitStructure);
TIM_ETRClockMode1Config(TIM2, TIM_ExtTRGPSC_OFF,TIM_ExtTRGPolarity_NonInverted, 0x00); //设置为采用外部时钟计数,可设定滤波参数消除信号干扰
TIM_Cmd(TIM2,ENABLE);
TIM_ClearITPendingBit(TIM3,TIM_IT_Update);
TIM3_TimeBaseInitStructure.TIM_Period = 999;
TIM3_TimeBaseInitStructure.TIM_Prescaler = 3599;
TIM3_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM3_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3,&TIM3_TimeBaseInitStructure);
TIM_Cmd(TIM3,ENABLE);
TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE );
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);
NVIC_InitStructure.NVIC_IRQChannel=TIM3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority=0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
定时器中断函数
void TIM3_IRQHandler()
{
static u8 i;
static u32 frequent_sum;
TIM_ClearITPendingBit(TIM3,TIM_IT_Update); //清中断
if(i<19)
{
cnt += TIM_GetCounter(TIM2); //,获取计数器的值,累加减少误差
TIM_SetCounter(TIM2,0); //计数器清零
i++;
}
else
{
cnt += TIM_GetCounter(TIM2);
TIM_SetCounter(TIM2,0);
cnt += cnt*0.000025; //根据实际情况修改系数线性补偿
frequent = cnt;
i = 0;
cnt = 0;
}
}
-----------------------------------------------------------------------------------------------------------------
上一篇:STM32单片机-资料查找
下一篇:STM32单片机-PWM波形输出
推荐阅读最新更新时间:2024-11-11 11:53
推荐帖子
- 射频放大器基础
- 射频放大器,根本上是我们射频系统中的正反馈系统,一般位于发射链路上。由于考虑无线传输的链路衰减,发射端需要辐射足够大的功率才能获得比较远的通信距离。因此,射频放大器主要负责将功率放大到足够大后馈送到天线上辐射出去,是通信系统中的核心器件。射频放大器,根本上是我们射频系统中的正反馈系统,一般位于发射链路上。由于考虑无线传输的链路衰减,发射端需要辐射足够大的功率才能获得比较远的通信距离。因此,射频放大器主要负责将功率放大到足够大后馈送到天线上辐射出去,是通信系统中的核心器件。
- 他们逼我做卧底 RF/无线
- 这种元件是什么名字
- 万能的坛友们,各位在设计PCB时,有没有遇到过需要板子上焊接,可以插香蕉插头的接线柱需求,那种接线柱叫什么名字,最小尺寸是什么?或者说是测试口,方便从信号源引线进去插接,平时不用,就标定时用的。这种元件是什么名字香蕉插座的插孔直径通常设计为4mm,以适配标准4mm香蕉插头 朋友,我想找在PCB焊接的标定口,方便插信号源的线,这个是面板安装的标定口 有没有在PCB上焊接的,方便信号源引线进去,但是不想用连接器,本身空间就不够。PCB上画一个接线柱的封装,
- 呜呼哀哉 模拟电子
- 又有新板到啦~~杰发AC7801X电机demo板来了,测评活动即将上线...
- 杰发AC7801X板子到啦~特别的漂亮~来给大家晒晒图~~活动会赶在国庆前发布,欢迎大家来参加呀呀呀~~更多的资料请点击这里:杰发简介合肥杰发科技有限公司(AutoChipsInc.)成立于2013年,是北京四维图新科技股份有限公司(股票代码:002405.SZ)全资子公司,下设上海途擎微电子有限公司。杰发科技专注于汽车电子芯片及相关系统的研发与设计,在合肥、深圳、上海、武汉设立有研发及市场销售中心。又有新板到啦~~杰发
- okhxyyo 国产芯片交流
- 嵌入式线控驾驶系统开发过程中设计和测试考虑
- 由于有了基于模型的设计,使得开发大量的汽车嵌入式系统时,可以由模型自动生成最终编译的软件。不过,这项工作需要一个软件工程框架的支持。本文使用线控驾驶系统(steer-by-wiresystem)作为实例,给出了设计汽车嵌入式系统的过程、方法和测试工具的一个框架。近来,有报道称包括Denso、Motorola和Toyota在内的不同行业的多家公司都在产品代码方面取得了成功。这项技术正日益成为软件下一波演进发展中的一个重要组成部分。虽然总体而言,它对软件工程化过程的影响已为业界所了解,但却并没
- 6294316 汽车电子
- 解决对讲机盲区通信的方法
- 在超短波常规无线通信中,经常面临手持机通信距离短的问题。因为手持机受体积、重量和耗电等多方面制约,不可能大幅提高功率和使用高增益天线来扩大通信范围。通常解决这个问题是利用转发台来扩大手持机的通信距离。由于超短波是属于视距传播,只要将转发台置于高处, 在超短波常规无线通信中,经常面临手持机通信距离短的问题。因为手持机受体积、重量和耗电等多方面制约,不可能大幅提高功率和使用高增益天线来扩大通信范围。通常解决这个问题是利用转发台来扩大手持机的通信距离。由于超短波是属于视距传播,只要将转发
- Jacktang RF/无线
- 提供FPGA PCIe PCI等解决方案
- 提供FPGAPCIePCI等解决方案,包括硬件软件windows驱动等,同时承接各种FPGA板卡开发QQ13141504提供FPGAPCIePCI等解决方案
- tomdong074 FPGA/CPLD
设计资源 培训 开发板 精华推荐
- LT3990EDD 5V、2MHz 降压转换器的典型应用
- STC8A8K64S4A12加强版开发板
- LTC4213 无 RSENSE 电子断路器热插拔控制器的典型应用
- ADR435A 5 Vout 超低噪声 XFET 电压基准的典型应用,具有灌电流和拉电流能力
- AD8505ARJZ-R7 脉搏血氧计红色和红外电流源作为电压基准器件的缓冲器的典型应用电路
- 具有浪涌电流控制的低压热插拔控制器
- LT3692AIFE、3.3V 和 1.8V 2 级双路降压多频转换器的典型应用电路
- LT1793 的典型应用 - 低噪声、皮安偏置电流、JFET 输入运算放大器
- LTC2946MPMS-1 电源、电荷和能量监视器在 -48V 恶劣环境中的典型应用,使用 INTVCC 并联稳压器来耐受 200V 瞬态
- 具有三态控制的 LT3743 大电流同步降压型 LED 驱动器的典型应用