基于S3C2410A和AD7656-1菊花链实现多通道ADC的设计

发布者:lambda21最新更新时间:2023-02-15 来源: elecfans关键字:S3C2410A  AD7656-1  菊花链  ADC 手机看文章 扫描二维码
随时随地手机看文章

引 言

在变电站自动化系统中,常需要对多个三相电压电流信号进行数据采集和处理(如电能质量实时监控),这时需要实现对多路信号的同时、快速的数据采集。美国模拟器件公司(ADD的AD7656-1是一款16位6通道的模/数转换芯片,内部含有6个独立的A/D转换器,可同时进行A/D转换,具有转换精度高、速度快、功耗低、输入模拟信号幅度大、信噪比高等优点,其突出特点是可通过多个AD7656-1级联形成菊花链实现多个通道同时进行数据采集,并通过一个或多个串口发送数据给主控处理器。以S3C2410A为主控处理器,多个AD7656-1组成菊花链实现多通道、高精度的ADC,在很大程度上可提高数据采集系统的信号采集和处理能力,具有较好的应用前景。


1、 AD7656-1的特点

图1为AD7656-1的内部功能框图。其主要特性为:

6个独立的16位逐次逼近(SAR)型模数转换器。

可通过引脚或软件方式设定输入信号的电压范围(±10 V,±5 V)。

最高吞吐率为250 ksps。

宽带宽输入高信噪比:输入频率为10 kHz时的信噪比(SNR)为88 db。

带有片上2.5 V基准电压源和基准缓冲器。

低功耗,5 V供电时在250 kSPS下功耗仅为140 mW。

支持并行、串行及菊花链接口模式。

高速串行接口,兼容SPI/QSPI/MICROWIRE/DSP。

采用iCMOS制造工艺,64引脚的LQFP封装。

应用领域:输电线路监测系统、仪器仪表和控制系统、多轴定位系统。

基于S3C2410A和AD7656-1菊花链实现多通道ADC的设计

2、 AD7656-1菊花链工作原理及其配置

2.1 AD7656-1菊花链工作原理

AD7656-1有2种接口模式:串行接口模式和并行接口模式。在数据转换时,3个转换信号CONVSTA/B/C用来控制每对或每4个或每6个ADC同时采样。如果将3个CONVST引脚连接在一起接收同一个采样启动信号,就可使6个ADC同时进行采样,此时再将多个AD7656-1级联就可以形成菊花链,实现6N(N=2,3,…,8)个ADC通道同时采样,如图2所示。在CONVSTX的上升沿,ADC被置为保持模式,转换开始。CON-VSTX的上升沿过后,BUSY信号变为高电平表明转换正在进行,3μs后BUSY信号返回低电平表明转换结束。在BUSY信号的下降沿,ADC回到跟踪模式。数据可以通过1~3个串行接口从输出寄存器读出,并由主控处理器接收并存储。AD7656-1采用同步串行接口(SPI)发送数据时,每发送一个比特位数据就要花去一个单位的SCLK脉冲的时间,发送完6个通道的16位数据就要花去96个SCLK脉冲。菊花链中多个AD7656-1通过数据接力传递的方式把数据依次发送给主控处理器,通过采用多个串行接口发送数据可减少发送时间,提高菊花链的数据传递效率。AD7656-1串行数据输出接口及其对应的通道数据关系和发送所需的SCLK脉冲个数关系如表1所列。

多个AD7656-1级联就可以形成菊花链

AD7656-1串行数据输出接口及其对应的通道数据关系和发送所需的SCLK脉冲个数关系

2.2 AD7656-1菊花链的配置

AD7656-1要工作在菊花链方式,其数据输出必须设置为串口模式,且在串口模式下,AD7656-1必须配置成硬件模式。所谓的硬件模式是通过对器件引脚的固定连接,确定AD7656-1 芯片唯一的工作方式,此时AD7656-1也不能配置成软件工作模式了。AD7656-1菊花链配置的主要原则如下:

①在多片级联的AD76561中,位于级联最远端的芯片不能配置为菊花链工作模式,即其DCEN引脚置低电平(数字地);但其下流数据链的每片AD7656-1必须配置为菊花链工作模式,即DCEN引脚都要置逻辑高电平(VDRIVE)。

②SEL A、SEL B、SEL C对应使能DOUT A、DOUT B、DOUT C串口输出口。要选用DOUT X串行输出口,就置对应的SEL X为逻辑高电平,其余不用的SEL引脚必须置逻辑低电平。图3(a)、(b)、(c)为1~3个串行输出口的引脚配置。(图中“NC”表示未连接)

1

③菊花链中的每片AD7656-1的串行数据输入/输出(DCIN X/DOUT X)必须遵循同一配置,即有几个DCIN输入就有几个DOUT输出。

④菊花链中的每块AD7656-1的CONVST X(X=A、B、C)都要接主控处理器发送来的CONVERT信号,即配置为每块AD7656-1的V1~V6通道同时采样。


3、 AD7656-1菊花链与S3C2410A接口设计

3.1 硬件电路设计

采用2片 AD7656-1配置成菊花链,可实现12通道同时采样,数据通过DOUT A口输出,S3C2410A用同步串行接口0(SPIO)接收数据,如图4所示。S3C2410A的GPEll引脚实现片上同步串行接口SPlO的 MISO功能,GPEl3(SCK)引脚实现SPIO接口的同步时钟输出,GPFO引脚配置为中断EINTO输入并与AD7656-1(1)的BUSY脚相连;GPBO设置为PWM输出,GPG9引脚没置为通用输出口,分别作为AD7656-1(1)和AD7656-1(2)的CONVST和CS的控制信号输入。AD7656-1连接外围电路时,必须对关键引脚进行必要的设置:AD7656-1(1)、AD7656-l(2)的DVCC、AVCC、 VDRIVE、REFIN/OUT和VSS引脚须并联一个1 μF的去耦电容;为了与S3C2410A的3.3 V的接口匹配,VDRIVE接+3 V电源;STBY接VDRIVE,选择正常模式;RANGE接地表示选择输入范围±10V;H/s接数字地选择为硬件配置;SER/PAR接 VDRIVE,RD接数字地,选择为串行模式。AD7656-1(1)的DCEN接VDRIVE,配置为菊花链模式,且SEL A接VDRIVE,SEL B、C,DCIN A、B、C接数字地;AD7656-1(2)的DCEN接数字地,配置为非菊花链模式,且SEL A接VDRIVE,SEL B、C,DCIN B、C接数字地。具体配置如图5所示。

采用2片AD7656-1配置成菊花链

AD75656外围电路及其与S3C2410A引脚连接电路

3.2 数据采集传输流程

通过定时器中断来控制信号的采样间隔,设定S3C2410A的定时器0作为采样定时器,并设置其工作于PWM方式,定时器0的PWM输出TOUTO作为AD7656-1的模数转换控制信号CON-VST的输入,引脚GPFO (EINTO)设置为下降沿触发。A/D采样操作时序如图6所示。当采样定时器中断发生,TOUTO(引脚GPBO)输出高电平,发送CONVST信号给菊花链上的每个AD7656-1开始模数转换。3μs后12个通道的数据全部转换完,BUSY信号从高电平向低电平转换,触发EINTO中断,开始数据传送;GPG9输出低电平给AD7656-1(1)和AD7656-1(2)的CS引脚,同时S3C2410A的SPI通道0开始读数据。读完12个通道的转换结果后,GPG9恢复高电平输出,TOUTO输出低电平,完成一次采样。等待下一个采样定时器中断发生,进行下一个采样。可通过设定定时器0的内部寄存器TC-MPBO的值来控制TOUTO输出高电平的宽度TPH。

A/D采样操作时序

AD7656-1通过DOUT A发送采集到的数据给S3C2410A,其发送时序如图7所示。当BUSY从高电平返回低电平时表示转换结束,触发外部中断,EINTO,通知 S3C2410A启动SPI接收数据,CS信号变为低电平开始串行传输。在整个传输过程中,CS一直维持低电平,直到传输完为止。

发送时序

3.3 软件设计

在对三相交流电进行数据采集过程中,每个周期要求采样256点,即20 ms采样256点,也就是每78.125μs采样一次。S3C241OA定时器O每78.125μs发生一次定时中断,启动A/D转换。12个通道的数据全部转换完后,BUSY信号变低触发外部中断0,通知S3C2410A读取数据。S3C2410A输出片选信号CS给AD7656-1,并通过SPIO开始读取转换结果。SPIO配置为主入从出(MISO)和MDA接收模式,因其只接收数据,故需同时发送哑元“OxFF”。把12路数据读完,退出中断,等待定时器下一次定时到,启动下一次转换。待256点数据转换完之后,暂停定时计数,进行数据处理。完成后再次启动定时,完成下一个周期的256点采集,流程如图8(a)所示。其包括两个中断子程序:采样定时器中断子程序,用于启动采样信号CONVST并给外部中断0置位,允许响应BUSY下降沿触发中断,如图8(b)所示;外部中断0(EINTO)子程序,用于启动SPIO接收数据,如图8(c)所示。

数据采样传输流程

4、 结 论

本文介绍了16位模数转换芯片AD7656-1的菊花链工作原理,设计了基于AD7656-1菊花链与S3C2410A数据采集接口,可实现12通道、高精度的ADC。SPI串行传输具有占用微处理器I/O资源少,硬件连接简单等特点。当菊花链中AD7656-1芯片数量较多时,为了提高数据传输效率并满足实时性要求,可以采用2个或3个串行口传输数据。主控处理器也可以采用DSP芯片,同样能实现菊花链。本设计方案可广泛应用于电力系统电能质量监控、变电站保护测控IED等嵌入式系统


关键字:S3C2410A  AD7656-1  菊花链  ADC 引用地址:基于S3C2410A和AD7656-1菊花链实现多通道ADC的设计

上一篇:基于HMS30C7202嵌入式处理器实现触摸屏控制器的接口设计
下一篇:将16x2 LCD与ARM7-LPC2148连接并显示文字

推荐阅读最新更新时间:2024-11-17 18:41

STM32之ADC+步骤小技巧
神通广大的各位互联网的网友们、大家早上中午晚上好好好、今早起来很准时的收到了两条10086的扣月租的信息、心痛不已、怀着这心情、又开始了STM32的研究、早上做了计算机控制的PID实验,又让我想起了飞思卡尔的电磁小车、、曾经的电感电压采集让我心碎的多少次、又让我开心了多少次、但已经成为过去、(软件和硬件都会影响),呵呵、估计有人已经猜到我接下来要介绍什么了、在你们面前、我已无秘密、额、其实标题也直接“表白”了、看到标题,别吓到哈、并不是要用英文写、至于原因是什么、请往下看: 好吧、言归正传:STM32的ADC模块,请允许我用如此通俗的语言:普通话 来介绍STM32ADC模块的特色 1、1MHz转换速率、12位转换结果(1
[单片机]
STM32之<font color='red'>ADC</font>+步骤小技巧
adc0832与at89s52接口电路及真空度数据采集
真空系统在电力、石油化工、医疗制药、塑料、环保、医疗器械等行业都得到了广泛地应用,随着真空应用领域的不断扩展和深入,对真空技术指标要求亦越来越高,例如,在金刚石镀膜装置中,由于沉积金刚石膜的时间长达几十个小时,真空室真空度的稳定性对成膜质量的好坏有很大的影响,所以保持真空度的稳定将成为一个关键性的技术问题;离心式水泵在抽真空引水过程及水泵抽水过程中,离心式水泵入口的真空度已成为离心式水泵起/停、故障诊断的重要依据。只有将压力传感器获取的模拟信号进行有效的A/D转换成数字量后,才能输入单片机中进行处理,以及与PC通信及后续的波形显示和分析。笔者提出了ADC0832与压力传感器(PTB710)相结合,并利用单片机AT89S52的程序控
[单片机]
<font color='red'>adc</font>0832与at89s52接口电路及真空度数据采集
STM32基础设计(5)---ADC转换(中断方式)
本文简单介绍了STM32F103C8,通过中断方式读取电压,不过最后楼主读取参考电压失败,还没有找到错误,所以读取的电压只能十六进制显示,如有不便请忽略本文! 本文的介绍按照一般流程来走: 1,串口的初始化 2,ADC初始化 3,中断初始化 4,编写中断函数 5,编写主函数 接下来详细介绍: 1,串口的初始化: void usart_init() { GPIO_InitTypeDef Uart_A; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA ,ENABLE); Uart_A.GPIO_Pin = GPIO_Pin_9; Uar
[单片机]
ADC技术哪家强?
眼下,中国的集成电路产业正在加紧追赶世界先进水平的脚步,除了像CPU、、GPU、DSP、FPGA这样的核心处理器之外,我们在高性能模拟器件方面,还处于后来学习者的角色。而ADC/DAC是模数混合IC,是连接模拟和数字世界之间的桥梁,具有很高的技术含量。 ADC、DAC,特别是超高速(采样率≥100Msps)芯片,是未来100G光通信、4G/5G基站、测试测量仪器设备,以及数字雷达等应用领域的核心器件,具有广阔的应用和发展空间。 工作原理及分类 ADC的任务就是将模拟信号转换为数字信号,其性能指标分为两大类,一是动态指标,主要包括:采样率,分辩率(又称采样精度),转换速率(Conversion Rate),无杂散动态范
[电源管理]
<font color='red'>ADC</font>技术哪家强?
利用热电偶和ADC实现高精度温度测量
热电偶广泛用于各种温度检测。热电偶设计的最新进展,以及新标准和算法的出现,大大扩展了工作温度范围和精度。目前,温度检测可以在-270 C至+1750 C宽范围内达到 0.1 C的精度。为充分发挥新型热电偶能力,需要高分辨率热电偶温度测量系统。能够分辨极小电压的低噪声、24位、 - 模/数转换器(ADC)非常适合这项任务。数据采集系统(DAS)采用24位ADC评估(EV)板,热电偶能够在很宽的温度范围内实现温度测量。热电偶、铂电阻温度检测器(PRTD)和ADC相结合,可构成高性能温度测量系统。采用低成本、低功耗ADC的DAS系统,可理想满足便携式检测的应用需求。 热电偶入门 托马斯 塞贝克在1822年发现了热电偶原理。热电偶是一种
[测试测量]
利用热电偶和<font color='red'>ADC</font>实现高精度温度测量
低功耗模拟前端电路设计
超低功耗、高集成的模拟前端芯片MAX5865是针对便携式通信设备例如手机、PDA、WLAN以及3G无线终端而设计的,芯片内部集成了双路8位接收ADC和双路10位发送DAC,可在40Msps转换速率下提供超低功耗与更高的动态性能。芯片中的ADC模拟输入放大器为全差分结构,可以接受1VP-P满量程信号;而DAC模拟输出则是全差分信号,在1.4V共模电压下的满量程输出范围为400mV。利用兼容于SPITM和MICROWIRETM的3线串行接口可对工作模式进行控制,并可进行电源管理,同时可以选择关断、空闲、待机、发送、接收及收发模式。通过3线串口将器件配置为发送、接收或收发模式,可使MAX5865工作在FDD或TDD系统。在TDD模式下,
[模拟电子]
STM32笔记 ADC
一、总转换时间的问题: 总转换时间TCONV = 采样时间+ 转换时间(转换时间=12.5个周期) 其中,采样时间是指完成一次转换到开始下一次转换的时间间隔,不包括转换时间;转换时间是固定的12.5个周期。采样时间有几个固定值可以选择设定。 二、 ADON:开/关A/D转换器 该位由软件设置和清除。当该位为0时,写入1将把ADC从断电模式下唤醒。当该位为1时,写入1将启动转换。在转换器上电至转换开始有一个延迟时间tSTAB。 函数void ADC_Cmd(ADC_TypeDef* ADCx, FunctionalState NewState);虽然描述说是使能失能ADC,其实就是对ADON的操作,也就
[单片机]
具有SNRBoost 技术的低功耗11位200 MSPS ADC
日前,德州仪器 (TI) 宣布推出业界最低功耗 11 位 200 MSPS ADC 系列,该系列提供四通道 (ADS58C48)、双通道 (ADS58C28) 以及缓冲单通道输入 (ADS58B18) 选项。这些 ADC 采用 SNRBoost 技术,可为要求高达 65 MHz 信号带宽的多载波与多模式通信系统(如CDMA、WCDMA、TD-SCDMA、LTE 以及 WiMAX 等)提高带内信噪比 (SNR)。例如,ADS58C48 的 SNRBoost 技术可在 185 MSPS 下为整个 60 MHz 带宽提高达 4.3 dB 的 SNR,从而可为各种通信提高带宽与灵敏度,满足远程无线电头端 (remote radio
[模拟电子]
具有SNRBoost 技术的低功耗11位200 MSPS <font color='red'>ADC</font>
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved