热电偶广泛用于各种温度检测。热电偶设计的最新进展,以及新标准和算法的出现,大大扩展了工作温度范围和精度。目前,温度检测可以在-270°C至+1750°C宽范围内达到±0.1°C的精度。为充分发挥新型热电偶能力,需要高分辨率热电偶温度测量系统。能够分辨极小电压的低噪声、24位、Σ-Δ模/数转换器(ADC)非常适合这项任务。数据采集系统(DAS)采用24位ADC评估(EV)板,热电偶能够在很宽的温度范围内实现温度测量。热电偶、铂电阻温度检测器(PRTD)和ADC相结合,可构成高性能温度测量系统。采用低成本、低功耗ADC的DAS系统,可理想满足便携式检测的应用需求。
热电偶入门
托马斯•塞贝克在1822年发现了热电偶原理。热电偶是一种简单的温度测量装置,由两种不同金属(金属1和金属2)组成(图1)。塞贝克发现不同的金属将产生不同的、与温度梯度有关的电势。如果这些金属焊接在一起构成温度传感器结(TJUNC,也称为温度结),另一端未连接的差分结(TCOLD,作为恒温参考端)上将呈现出电压,VOUT,该电压与焊接结的温度成正比。从而使热电偶输出随温度变化的电压/电荷,无需任何电压或电流激励。
图1. 热电偶简化电路
VOUT温差(TJUNC - TCOLD)是金属1及金属2的金属类型的函数。该函数在美国国家标准与技术研究院(NIST) ITS-90热电偶数据库[1]中严格定义,覆盖了绝大多数实用金属1和金属2组合。利用该数据库,可根据VOUT测量值计算相对温度TJUNC。然而,由于热电偶以差分方式测量TJUNC,为了确定温度结的实测温度,就必须知道冷端绝对温度(单位为°C、°F或K)。所有现代热电偶系统都利用另一绝对温度传感器(PRTD、硅传感器等)精密测量冷端温度,并进行数学补偿。
图1所示热电偶简化电路的温度公式为:
Tabs为温度结的绝对温度;
TJUNC为温度结与基准冷端的相对温度;
TCOLD为冷端参考端的绝对温度。
热电偶的类型各种各样,但是针对具体的工业或医疗环境可以选择最适合的异金属对儿。这些金属和/或合金组合被NIST及国际电工委员会标准化,简写为E、J、T、K、N、B、S、R等。NIST和IEC为常见的热电偶类型提供了热电偶参考表[1]。
NIST和IEC还为每种热电偶类型开发了标准数学模型。这些幂级数模型采用独特的系数组合,每种热电偶类型及不同温度范围的系数都不同[1]。
表1所示为部分常见热电偶类型(J、K、E和S)的例子。
表1. 常见的热电偶类型
J型热电偶具有相对较高的塞贝克系数、高精度和低成本,应用广泛。这些热电偶使用相对简单的线性化算法,即可达到±0.1°C的测量精度。
K型热电偶覆盖的温度范围宽,在工业测量领域的应用非常广泛。这些热电偶具有适中的高塞贝克系数、低成本及良好的抗氧化性。K型热电偶的精度高达±0.1°C。
E型热电偶的应用没有其它类型热电偶普及。然而,这组热电偶的塞贝克系数最高。E型热电偶所需的测量分辨率低于其它类型。E型热电偶的测量精度可达到±0.5°C,需要的线性化计算方法相对复杂。
S型热电偶由铂和铑组成,这对组合能够在非常高的氧化环境下实现稳定、可复现的测量。S型热电偶的塞贝克系数较低,成本相对较高。S型热电偶的测量精度可达到±1°C,需要的线性化算法相对复杂。
应用示例
图2所示为简化原理图。MX7705是一款16位、Σ-Δ ADC,内置可编程增益放大器(PGA),无需外部精密放大器,能够分辨来自热电偶的微伏级电压。冷端温度利用MAX6627远端二极管传感器以及位于热电偶连接器处、连接成二极管的晶体管测量。MX7705的输入共模范围扩展至低于地电势30mV,可实现有限的负温度范围[2]。
图2. 热电偶测量电路。MX7705测量热电偶输出,MAX6627和外部晶体管测量冷端温度,MAX6002为MX7705提供2.5V精密电压基准。
也有针对具体应用设计的IC,用于热电偶信号调理。这些IC集成本地温度传感器、精密放大器、ADC和电压基准。例如,MAX31855为冷端补偿热电偶至数字转换器,可数字化K、J、N、T或E型热电偶信号。MAX31855以14位(0.25°C)分辨率测量热电偶温度(图3)。
图3. 集成冷端温度补偿的ADC,转换热电偶电压时无需外部补偿。
可利用新型铂RTD (PRTD)测量冷端绝对温度。它在很宽的温度范围内提供良好的性能,尺寸小、功耗低,成本非常合理。
图4所示为精密DAS的简化原理图,采用了MAX11200 (24位、Σ-Δ ADC)评估(EV)板,可实现热电偶温度测量。本例中,利用R1 - PT1000 (PTS 1206,1000Ω)测量冷端绝对温度。该解决方案能够以±0.30°C或更高精度测量冷端温度[3]。
图4. 热电偶DAS简化图
如图4所示,MAX11200的GPIO设置为控制精密多路复用器MAX4782,它选择热电偶或PRTD R1 - PT1000。该方法可利用单个ADC实现热电偶或PRTD的动态测量。提高了系统精度,降低校准要求。
非线性误差
图4和图5中说明,如果没有经过适当补偿,常见的工业K型热电偶的非线性误差会超过数十摄氏度。
图5. K型热电偶的输出电压和温度关系图。曲线在-50°C至+350°C范围内线性度较好;在低于-50°C和高于+350°C时,相对于绝对线性度存在明显偏差。[1]
图6. 相对于直线逼近的偏差,假设线性输出为从-50°C至+350°C,平均灵敏度为k = 41µV/°C。[1]
IEC采用的NIST ITS-90等现代热电偶标准化处理、查找表和公式数据库[1],是当前系统间互换热电偶类型的基础。通过这些标准,热电偶很容易由相同或不同制造商的其它热电偶所替代,而且经过最少的系统设计更新或校准即可确保性能指标。
NIST ITS-90热电偶数据库提供了详细的查找表。通过使用标准化多项式系数[1],还可利用多项式在非常宽的温度范围内将热电偶电压换算成温度(°C)。
根据NIST ITS-90热电偶数据库,多项式系数为:
T为温度,单位为°C;
E为VOUT,热电偶输出,单位为mV;
dN为多项式系数,每一热电偶的系数是唯一的;
N = 多项式的最大阶数。
表2所示为一个K型热电偶的NIST (NBS)多项式系数。
表2. K型热电偶系数
利用表2中的多项式系数,能够在-200°C至+1372°C温度范围内以优于±0.1°C的精度计算温度T。大多数常见热电偶都有不同系数表可用[1]。
同样,在-200°C至0、0至+500°C和+500°C至+1372°C温度范围也可以找到类似的NIST ITS-90系统,能够以更高精度(低于±0.1°C,相对于±0.7°C)计算温度。与原来的“单”间隔表进行比较即可看出这点[2]。
ADC规格参数/分析
表3. MAX11200的主要技术指标
本文中使用的MAX11200是一款低功耗、24位、Σ-Δ ADC,适合于需要宽动态范围、高分辨率的低功耗应用。利用该ADC,基于式3和4可计算图3电路的温度分辨率。
Rtlsb为热电偶在1 LSB时的分辨率;
Rtnfr为热电偶无噪声分辨率(NFR);
VREF为基准电压;
Tcmax为测量范围内的热电偶最大温度;
Tcmin为测量范围内的热电偶最小温度;
Vtmax为测量范围的热电偶最大电压;
Tcmax为测量范围内的热电偶最小电压;
FS为ADC满幅编码,对于双极性配置的MAX11200为(223-1);
NFR为ADC无噪声分辨率,对于双极性配置的MAX11200为(220-1),10Sa/s时。
表4所列为利用式3和4计算表1中K型热电偶的测量分辨率。
表4. K型热电偶在不同温度范围内的测量分辨率
表4中提供了每个温度范围内的°C/LSB误差和°C/NFR误差计算值。无噪声分辨率(NFR)表示ADC能够可靠区分的最小温度值。对于整个温度范围,NFR值低于0.1°C,对于工业和医疗应用中的大多数热电偶远远足够。
热电偶与MAX11200评估板的连接
MAX11200EVKIT提供了全功能、高分辨率DAS。评估板可帮助设计工程师快速完成项目开发,例如验证图4所示解决方案。
在图4所示原理图中,常见的K型OMEGA热电偶(KTSS-116 [5])连接至差分评估板输入A1。利用Maxim应用笔记4875中介绍的高性价比比例方案,测量冷端温度的绝对值[3]。R1 (PT1000)输出连接至评估板输入A0。MAX11200的GPIO控制精密多路复用器MAX4782,复用器动态选择将热电偶或PRTD R1输出连接至MAX11200的输入。
K型热电偶(图3、4)在-50°C至+350°C范围内的线性度适当。对于有些不太严格的应用,线性逼近公式(式5)能大大降低计算量和复杂度。
近似绝对温度可计算为:
E为实测热电偶输出,单位为mV;
Tabs为K型热电偶的绝对温度,单位为°C;
Tcj为PT1000实测的热电偶冷端温度,单位为°C [3];
Ecj为利用Tcj计算得到的冷端热电偶等效输出,单位为mV。
所以:
k = 0.041mV/°C——从-50°C至+350°C范围内的平均灵敏度
然而,为了在更宽的温度范围(-270°C至+1372°C)内精密测量,强烈建议采用多项式(式2)和系数(根据NIST ITS-90):
Tabs为K型热电偶的绝对温度,单位为°C;
E为实测热电偶输出,单位为mV;
Ecj为利用Tcj计算得到的冷端热电偶等效输出,单位为mV;
f为式2中的多项式函数;
TCOLD为PT1000实测的热电偶的冷端温度,单位为°C。
图7所示为图4的开发系统。该系统包括经认证的精密校准器,Fluke®-724,作为温度模拟器代替K型OMEGA热电偶。
详细图片(PDF, 3.1MB)
图7. 图4开发系统
Fluke-724校准器提供与K型热电偶在-200°C至+1300°C范围内输出相对应的精密电压,送至基于PT1000的冷端补偿模块。基于MAX11200的DAS动态选择热电偶或PRTD测量值,并通过USB端口将数据送至笔记本计算机。专门开发的DAS软件采集并处理热电偶和PT1000输出产生的数据。
表5列出了-200°C至+1300°C温度范围内的测量和计算值,采用式5和6。
表5. -200°C至+1300°C范围的测量计算
如表5所示,利用式6,基于MAX11200的DAS系统在非常宽的温度范围内可达到±0.3°C数量级的精度。式5中的线性逼近法在很窄的-50°C至+350°C范围内仅能实现1°C至4°C的精度。
注意,式6需要相对复杂的线性化计算算法。
大约十年之前,在DAS系统设计中实现此类算法会受到技术和成本的限制。当今的现代化处理器速度快、性价比高,解决了这些难题。
总结
最近几年,适用于-270°C至+1750°C温度范围的高性价比、热电偶温度检测技术取得较大进展。在改进温度测量和范围的同时,成本也更加合理,功耗更低。
如果ADC和热电偶直接连接,这些基于热电偶的温度测量系统需要低噪声ADC (如MAX11200)。热电偶、PRTD和ADC集成至电路时,能够实现非常适用于便携式检测应用的高性能温度测量系统。
MAX11200具有较高的无噪声分辨率、集成缓冲器和GPIO驱动器,可直接连接任何传统的热电偶及高分辨率PRTD (如PT1000),无需额外的仪表放大器或专用电流源。更少的接线和更低的热误差进一步降低系统复杂性和成本,使设计者能够实现DAS与热电偶及冷端补偿模块的简单接口。
关键字:热电偶 ADC 温度测量
引用地址:利用热电偶和ADC实现高精度温度测量
热电偶入门
托马斯•塞贝克在1822年发现了热电偶原理。热电偶是一种简单的温度测量装置,由两种不同金属(金属1和金属2)组成(图1)。塞贝克发现不同的金属将产生不同的、与温度梯度有关的电势。如果这些金属焊接在一起构成温度传感器结(TJUNC,也称为温度结),另一端未连接的差分结(TCOLD,作为恒温参考端)上将呈现出电压,VOUT,该电压与焊接结的温度成正比。从而使热电偶输出随温度变化的电压/电荷,无需任何电压或电流激励。
图1. 热电偶简化电路
VOUT温差(TJUNC - TCOLD)是金属1及金属2的金属类型的函数。该函数在美国国家标准与技术研究院(NIST) ITS-90热电偶数据库[1]中严格定义,覆盖了绝大多数实用金属1和金属2组合。利用该数据库,可根据VOUT测量值计算相对温度TJUNC。然而,由于热电偶以差分方式测量TJUNC,为了确定温度结的实测温度,就必须知道冷端绝对温度(单位为°C、°F或K)。所有现代热电偶系统都利用另一绝对温度传感器(PRTD、硅传感器等)精密测量冷端温度,并进行数学补偿。
图1所示热电偶简化电路的温度公式为:
式中:
Tabs = TJUNC + TCOLD (式1)
Tabs为温度结的绝对温度;
TJUNC为温度结与基准冷端的相对温度;
TCOLD为冷端参考端的绝对温度。
热电偶的类型各种各样,但是针对具体的工业或医疗环境可以选择最适合的异金属对儿。这些金属和/或合金组合被NIST及国际电工委员会标准化,简写为E、J、T、K、N、B、S、R等。NIST和IEC为常见的热电偶类型提供了热电偶参考表[1]。
NIST和IEC还为每种热电偶类型开发了标准数学模型。这些幂级数模型采用独特的系数组合,每种热电偶类型及不同温度范围的系数都不同[1]。
表1所示为部分常见热电偶类型(J、K、E和S)的例子。
表1. 常见的热电偶类型
Thermocouple Type | Positive Conductor | Negative Conductor | Temperature Range (°C) | Seebeck Coefficient at +20°C |
J | Chromel | Constantan | 0 to 760 | 51µV/°C |
K | Chromel | Alumel | -200 to +1370 | 41µV/°C |
E | Chromel | Constantan | -100 to +1000 | 62µV/°C |
S | Platinum (10% Rhodium) | Rhodium | 0 to 1750 | 7µV/°C |
J型热电偶具有相对较高的塞贝克系数、高精度和低成本,应用广泛。这些热电偶使用相对简单的线性化算法,即可达到±0.1°C的测量精度。
K型热电偶覆盖的温度范围宽,在工业测量领域的应用非常广泛。这些热电偶具有适中的高塞贝克系数、低成本及良好的抗氧化性。K型热电偶的精度高达±0.1°C。
E型热电偶的应用没有其它类型热电偶普及。然而,这组热电偶的塞贝克系数最高。E型热电偶所需的测量分辨率低于其它类型。E型热电偶的测量精度可达到±0.5°C,需要的线性化计算方法相对复杂。
S型热电偶由铂和铑组成,这对组合能够在非常高的氧化环境下实现稳定、可复现的测量。S型热电偶的塞贝克系数较低,成本相对较高。S型热电偶的测量精度可达到±1°C,需要的线性化算法相对复杂。
应用示例
热电偶电路设计包括具有差分输入及能够分辨微小电压的高分辨率ADC、稳定的低漂移基准,以及准确测量冷端温度的方法。
图2所示为简化原理图。MX7705是一款16位、Σ-Δ ADC,内置可编程增益放大器(PGA),无需外部精密放大器,能够分辨来自热电偶的微伏级电压。冷端温度利用MAX6627远端二极管传感器以及位于热电偶连接器处、连接成二极管的晶体管测量。MX7705的输入共模范围扩展至低于地电势30mV,可实现有限的负温度范围[2]。
图2. 热电偶测量电路。MX7705测量热电偶输出,MAX6627和外部晶体管测量冷端温度,MAX6002为MX7705提供2.5V精密电压基准。
也有针对具体应用设计的IC,用于热电偶信号调理。这些IC集成本地温度传感器、精密放大器、ADC和电压基准。例如,MAX31855为冷端补偿热电偶至数字转换器,可数字化K、J、N、T或E型热电偶信号。MAX31855以14位(0.25°C)分辨率测量热电偶温度(图3)。
图3. 集成冷端温度补偿的ADC,转换热电偶电压时无需外部补偿。
冷端补偿
热电偶为差分传感器,利用温度结和冷端之间的温差产生输出电压。根据式1,只有精密测得冷端绝对温度(TREF)时,才能得到温度结的绝对温度(Tabs)。可利用新型铂RTD (PRTD)测量冷端绝对温度。它在很宽的温度范围内提供良好的性能,尺寸小、功耗低,成本非常合理。
图4所示为精密DAS的简化原理图,采用了MAX11200 (24位、Σ-Δ ADC)评估(EV)板,可实现热电偶温度测量。本例中,利用R1 - PT1000 (PTS 1206,1000Ω)测量冷端绝对温度。该解决方案能够以±0.30°C或更高精度测量冷端温度[3]。
图4. 热电偶DAS简化图
如图4所示,MAX11200的GPIO设置为控制精密多路复用器MAX4782,它选择热电偶或PRTD R1 - PT1000。该方法可利用单个ADC实现热电偶或PRTD的动态测量。提高了系统精度,降低校准要求。
非线性误差
热电偶为电压发生装置。但是,大多数常见热电偶[2,4]的输出电压作为温度的函数呈现非常高的非线性。
图4和图5中说明,如果没有经过适当补偿,常见的工业K型热电偶的非线性误差会超过数十摄氏度。
图5. K型热电偶的输出电压和温度关系图。曲线在-50°C至+350°C范围内线性度较好;在低于-50°C和高于+350°C时,相对于绝对线性度存在明显偏差。[1]
图6. 相对于直线逼近的偏差,假设线性输出为从-50°C至+350°C,平均灵敏度为k = 41µV/°C。[1]
IEC采用的NIST ITS-90等现代热电偶标准化处理、查找表和公式数据库[1],是当前系统间互换热电偶类型的基础。通过这些标准,热电偶很容易由相同或不同制造商的其它热电偶所替代,而且经过最少的系统设计更新或校准即可确保性能指标。
NIST ITS-90热电偶数据库提供了详细的查找表。通过使用标准化多项式系数[1],还可利用多项式在非常宽的温度范围内将热电偶电压换算成温度(°C)。
根据NIST ITS-90热电偶数据库,多项式系数为:
式中:
T = d0 + d1E + d2E² + ... dNEN (式2)
T为温度,单位为°C;
E为VOUT,热电偶输出,单位为mV;
dN为多项式系数,每一热电偶的系数是唯一的;
N = 多项式的最大阶数。
表2所示为一个K型热电偶的NIST (NBS)多项式系数。
表2. K型热电偶系数
Type-K Thermocouple Coefficients | |||
Temperature Range (°C) | -200 to 0 | 0 to 500 | 500 to 1372 |
Voltage Range (mV) | -5.891 to 0 | 0 to 20.644 | 20.644 to 54.886 |
Coefficients | |||
d0 | 0.0000000E+00 | 0.0000000E+00 | -1.3180580E+02 |
d1 | 2.5173462E+01 | 2.5083550E+01 | 4.8302220E+01 |
d2 | -1.1662878E+00 | 7.8601060E+02 | -1.6460310E+00 |
d3 | -1.0833638E+00 | -2.5031310E-01 | 5.4647310E-02 |
d4 | -8.9773540E-01 | 8.3152700E-02 | -9.6507150E-04 |
d5 | -3.7342377E-01 | -1.2280340E-02 | 8.8021930E-06 |
d6 | -8.6632643E-02 | 9.8040360E-04 | -3.1108100E-08 |
d7 | -1.0450598E-02 | 4.4130300E-05 | — |
d8 | -5.1920577E-04 | 1.0577340E-06 | — |
d9 | — | -1.0527550E-08 | — |
Error Range (°C) | -0.02 to 0.04 | -0.05 to 0.04 | -0.05 to 0.06 |
利用表2中的多项式系数,能够在-200°C至+1372°C温度范围内以优于±0.1°C的精度计算温度T。大多数常见热电偶都有不同系数表可用[1]。
同样,在-200°C至0、0至+500°C和+500°C至+1372°C温度范围也可以找到类似的NIST ITS-90系统,能够以更高精度(低于±0.1°C,相对于±0.7°C)计算温度。与原来的“单”间隔表进行比较即可看出这点[2]。
ADC规格参数/分析
表3所示为MAX11200的基本性能指标,具有图4中所示的电路特性。
表3. MAX11200的主要技术指标
MAX11200 | Comments | |
Sample Rate (sps) | 10 to 120 | The MAX11200's variable oversampling rate can be optimized for low noise and for -150dB line-noise rejection at 50Hz or 60Hz. |
Channels | 1 | GPIOs allow external multiplexer control for multichannel measurements. |
INL (ppm, max) | ±10 | Provides very good measurement linearity. |
Offset Error (µV) | ±1 | Provides almost zero offset measurements. |
Noise-Free Resolution (Bits) | 19.0 at 120sps; 19.5 at 60sps; 21.0 at 10sps | Very high dynamic range with low power. |
VDD (V) | AVDD (2.7 to 3.6) DVDD (1.7 to 3.6) |
AVDD and DVDD ranges cover the industry's popular power-supply ranges. |
ICC (µA, max) | 300 | Highest resolution per unit power in the industry; ideal for portable applications. |
GPIOs | Yes | Allows external device control, including local multiplexer control. |
Input Range | 0 to VREF, ±VREF | Wide input ranges |
Package | 16-QSOP, 10-µMAX® (15mm²) |
Some models like the MAX11202 are offered in a 10-µMAX package—a very small size for space-constrained designs. |
本文中使用的MAX11200是一款低功耗、24位、Σ-Δ ADC,适合于需要宽动态范围、高分辨率的低功耗应用。利用该ADC,基于式3和4可计算图3电路的温度分辨率。
式中:
(式3) (式4)
Rtlsb为热电偶在1 LSB时的分辨率;
Rtnfr为热电偶无噪声分辨率(NFR);
VREF为基准电压;
Tcmax为测量范围内的热电偶最大温度;
Tcmin为测量范围内的热电偶最小温度;
Vtmax为测量范围的热电偶最大电压;
Tcmax为测量范围内的热电偶最小电压;
FS为ADC满幅编码,对于双极性配置的MAX11200为(223-1);
NFR为ADC无噪声分辨率,对于双极性配置的MAX11200为(220-1),10Sa/s时。
表4所列为利用式3和4计算表1中K型热电偶的测量分辨率。
表4. K型热电偶在不同温度范围内的测量分辨率
Temperature Range (°C) | -200 to 0 | 0 to 500 | 500 to 1372 |
Voltage Range (mV) | -5.891 | 20.644 | 34.242 |
Rtlsb Resolution (°C/LSB) | 0.0121 | 0.0087 | 0.0091 |
Rtnfr Resolution (°C/NFR) | 0.0971 | 0.0693 | 0.0729 |
表4中提供了每个温度范围内的°C/LSB误差和°C/NFR误差计算值。无噪声分辨率(NFR)表示ADC能够可靠区分的最小温度值。对于整个温度范围,NFR值低于0.1°C,对于工业和医疗应用中的大多数热电偶远远足够。
热电偶与MAX11200评估板的连接
MAX11200EVKIT提供了全功能、高分辨率DAS。评估板可帮助设计工程师快速完成项目开发,例如验证图4所示解决方案。
在图4所示原理图中,常见的K型OMEGA热电偶(KTSS-116 [5])连接至差分评估板输入A1。利用Maxim应用笔记4875中介绍的高性价比比例方案,测量冷端温度的绝对值[3]。R1 (PT1000)输出连接至评估板输入A0。MAX11200的GPIO控制精密多路复用器MAX4782,复用器动态选择将热电偶或PRTD R1输出连接至MAX11200的输入。
K型热电偶(图3、4)在-50°C至+350°C范围内的线性度适当。对于有些不太严格的应用,线性逼近公式(式5)能大大降低计算量和复杂度。
近似绝对温度可计算为:
式中:
(式5)
E为实测热电偶输出,单位为mV;
Tabs为K型热电偶的绝对温度,单位为°C;
Tcj为PT1000实测的热电偶冷端温度,单位为°C [3];
Ecj为利用Tcj计算得到的冷端热电偶等效输出,单位为mV。
所以:
k = 0.041mV/°C——从-50°C至+350°C范围内的平均灵敏度
然而,为了在更宽的温度范围(-270°C至+1372°C)内精密测量,强烈建议采用多项式(式2)和系数(根据NIST ITS-90):
式中:
Tabs = ƒ(E + Ecj) (式6)
Tabs为K型热电偶的绝对温度,单位为°C;
E为实测热电偶输出,单位为mV;
Ecj为利用Tcj计算得到的冷端热电偶等效输出,单位为mV;
f为式2中的多项式函数;
TCOLD为PT1000实测的热电偶的冷端温度,单位为°C。
图7所示为图4的开发系统。该系统包括经认证的精密校准器,Fluke®-724,作为温度模拟器代替K型OMEGA热电偶。
详细图片(PDF, 3.1MB)
图7. 图4开发系统
Fluke-724校准器提供与K型热电偶在-200°C至+1300°C范围内输出相对应的精密电压,送至基于PT1000的冷端补偿模块。基于MAX11200的DAS动态选择热电偶或PRTD测量值,并通过USB端口将数据送至笔记本计算机。专门开发的DAS软件采集并处理热电偶和PT1000输出产生的数据。
表5列出了-200°C至+1300°C温度范围内的测量和计算值,采用式5和6。
表5. -200°C至+1300°C范围的测量计算
Temperature (Fluke-724) (°C) | PT1000 Code Measured at "Cold Junction" (LSB) | Thermocouple Code Adjusted to 0°C by PT1000 Measurements (LSB) | Temperature Calculated by Equation 6 and Table 2 (°C) | Temperature Error vs. Calibrator (°C) | Temperature Calculated by "Linear" Equation 5 (°C) |
-200 | 326576 | -16463 | -199.72 | 0.28 | -143.60 |
-100 | 326604 | -9930 | -99.92 | 0.08 | -86.62 |
-50 | 326570 | -5274 | -50.28 | -0.28 | -46.01 |
0 | 326553 | 6 | 0.00 | 0.00 | 0.05 |
20 | 326590 | 2257 | 20.19 | 0.19 | 19.68 |
100 | 326583 | 11460 | 100.02 | 0.02 | 99.96 |
200 | 326486 | 22779 | 200.18 | 0.18 | 198.69 |
500 | 326414 | 57747 | 500.16 | 0.16 | 503.70 |
1000 | 326520 | 115438 | 1000.18 | 0.18 | 1006.92 |
1300 | 326544 | 146562 | 1300.09 | 0.09 | 1278.40 |
如表5所示,利用式6,基于MAX11200的DAS系统在非常宽的温度范围内可达到±0.3°C数量级的精度。式5中的线性逼近法在很窄的-50°C至+350°C范围内仅能实现1°C至4°C的精度。
注意,式6需要相对复杂的线性化计算算法。
大约十年之前,在DAS系统设计中实现此类算法会受到技术和成本的限制。当今的现代化处理器速度快、性价比高,解决了这些难题。
总结
最近几年,适用于-270°C至+1750°C温度范围的高性价比、热电偶温度检测技术取得较大进展。在改进温度测量和范围的同时,成本也更加合理,功耗更低。
如果ADC和热电偶直接连接,这些基于热电偶的温度测量系统需要低噪声ADC (如MAX11200)。热电偶、PRTD和ADC集成至电路时,能够实现非常适用于便携式检测应用的高性能温度测量系统。
MAX11200具有较高的无噪声分辨率、集成缓冲器和GPIO驱动器,可直接连接任何传统的热电偶及高分辨率PRTD (如PT1000),无需额外的仪表放大器或专用电流源。更少的接线和更低的热误差进一步降低系统复杂性和成本,使设计者能够实现DAS与热电偶及冷端补偿模块的简单接口。
上一篇:运用电磁流量计提高石油采收率方法
下一篇:常见液位计的种类及应用
推荐阅读最新更新时间:2024-03-30 23:27
数字X射线技术帮助改进诊断图像质量
数字X射线正在改变放射科的工作方式。这项技术能够减少患者的辐射照射、改进诊断的图像质量,而且同传统的X射线系统相比,可以减少数千美元的化学处理费用。
数字X射线的成形可被分为直接转换和间接转换。直接转换利用基于硒的面板将非吸收光子直接转换为电荷,如图1所示。间接转换利用闪烁材料将光子转换为光,然后利用光电二极管、CCD或CMOS成像传感器将光转换为电信号,如图2所示。不论X射线能量如何转换为电信号,都必须从模拟信号转换为数字信号,才能进行图像处理。虽然整个图像的更新速率相对较低(15~120帧/秒),探测器却包含数百万个像素,在保证低成本与低功耗的前提下,实现高速信号的准确转换以及保持读数的
[医疗电子]
为什么要关注示波器 ADC 位数或者是 ENOB?- 了解信号的完整性
示波器ADC 位数与有效位数 示波器中的模数转换器(ADC)位数是最广为人知的技术指标之一。许多工程师将它视为决定示波器质量的唯一技术指标。但是,他们往往过于夸大ADC位数的重要性,而忽视了信号完整性的其他关键指标。 与 ADC 位数同样重要的是系统的有效位数(系统 ENOB)。系统 ENOB 是进行测量时的实际有效位数。在任意示波器中,有些 ADC 位是没有意义的,它们只 能在噪声中工作。因此,决定示波器测量质量的是 ENOB 而不是 ADC 位数。如果测量质量太差,那么得到的结果是不准确的,而且无法复现。这样可能会导致您在设计中采取错误的假设。 ENOB 能够更好地指示信号完整性,因为它将系统误差也考虑在内。 许多工程师没有听
[测试测量]
ADC0809做的51单片机8路电压采集
#include reg52.h float shuju; unsigned char sj; unsigned int gata; unsigned char gw,sw,bw; unsigned char kk,tdao; //4联共阳数码管,最高位显示通道号,其他三位为电压值 unsigned char code shuzi ={ 0xC0,0xF9,0xA4,0xB0,0x99, 0x92,0x82,0xF8,0x80,0x90}; unsigned char code duanxuan ={0x0f,
[单片机]
stm32f103zet6使用adc3通过dma2_5转换
#define ADC3_DR_Address ((u32)0x40013C4C) ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;//ADC1和ADC2工作在独立模式 ADC_InitStructure.ADC_ScanConvMode = ENABLE; //使能扫描 ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;//ADC转换工作在单次模式 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T2_CC3;//定时器2的捕获比较3为
[单片机]
支持 FPGA 逻辑的多 Gb ADC/DAC 采样套件
赛灵思推出了新款 Zynq UltraScale+ RFSoC ZCU111 评估套件,用于支持RF 级模拟设计评估,便于广大用户亲身尝试这款颠覆性技术。该套件属于同类首创,采用 Zynq UltraScale+ RFSoC ,整合了多 Gb ADC 和 DAC 采样功能以及 FPGA 逻辑。 同类首创!! 这款套件为什么是首创?所有其他类型 RF-ADC/DAC 均为分离式架构,这就需要购买 FPGA 评估卡外加ADC / DAC 子卡,并通过 FMC 或其他连接器进行连接。分离式实现方案在可用性和设计方面都面临一些挑战。分离式ADC/DAC 解决方案的高速收发器功耗很高,此外 FPGA 和 DAC/ADC 之间的串行连
[焦点新闻]
HP34401a实现高精度温度测量
老的HP34401a没有温度测量功能,在一些情况下使用非常不便。如果有pt100温度探头的话,可以配合做一个高精度温度记录仪,具备鸟枪换炮般的效果。 所需设备和辅材 HP 34401a 6位半数字万用表 铠装pt100温度探头带线 GPIB线缆 Agilent 82357B USB - GPIB 转换器 冰水混合物 1.如图所示连接好探头和GPIB线缆 2.运行MATLAB,编写程序进行仪器控制,并读取阻值进行转换,铂金电阻阻值与温度的关系如下图所示 为了解决零下的温度,需要求解一个4次方程,为简便期间,使用Matlab进行直接求解。 if(Resi R0) % 0 ~ 850℃ % 列出方程
[测试测量]
热电偶测温的使用原理
热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2.
[传感器]
STM8S_005_ADC采集单通道电压
Ⅰ、写在前面 和前面51系列的芯片相比,STM8S芯片的优势之一在于外设资源要丰富且功能要强大的多。因此,本文讲述STM8S的一项比较实用的功能:ADC采集电压。 在物联网的产品中,大多数传感器都使用了模数转换(ADC)这一功能。本文提供STM8S两种转换模式: Ø 单次软件触发 Ø 连续转换 本文将结合“STM8S参考手册”中ADC章节和软件源代码给大家讲述关于ADC相关的知识和用法。 为方便大家阅读,本文内容已经整理成PDF文件: http://pan.baidu.com/s/1i5uWhJR 作者:strongerHuang 版权所有,未经允许,禁止用于其它商业用途!!! Ⅱ、ADC基础知识 AD
[单片机]
小广播
热门活动
换一批
更多
最新测试测量文章
更多热门文章
更多每日新闻
更多往期活动
- 赢京东卡 室内空气隐患大作战——英飞凌XENSIV™PAS CO2传感器
- TI工业月参考设计亮点抢先看
- 【EEWORLD第二十九届】2011年08月社区明星人物揭晓!
- EEWORLD社区7月明星人物出炉
- 看视频赢京东卡 | PI无刷直流电机学习中心正式上线
- 用富士通Cortex-M3 Easy Kit开发板,DIY出你的精彩!l
- 有奖直播:基于GaN 的高频(1.2MHz)高效率 1.6kW 高密度临界模式 (CrM) 图腾柱功率因数校正 (PFC)转换器的应用介绍
- 答题:与世健一起探索—储能应用背后的硬核技术
- Microchip直播:单片机编程不再难, 利用MPLAB®代码配置器(MCC)实现快速开发
11月22日历史上的今天
厂商技术中心