用LPC2119芯片CAN总线和DSl8B20设计的智能超声液位变送器

发布者:心灵之窗最新更新时间:2023-03-06 来源: elecfans关键字:CAN总线  DSl8B20 手机看文章 扫描二维码
随时随地手机看文章

0 引言

现场总线是用于现场仪表与控制系统和控制室之间的一种全分散、全数字化、智能、双向、互连、多变量、多点、多站的通信网络。CAN(Controller Area Network,控制器局域网)是德国Bosch公司在80年代初为解决现代汽车中大量的控制与测试仪器之间的数据交换而提出的一种串行数据通信协议。CAN总线是国际上应用最广泛的现场总线之一,由于采用了许多新技术以及独特的设计,与一般的通信总线相比,CAN总线的数据通信具有突出的性能,且可靠性、实时性和灵活性强。


近些年来,随着超声技术研究的不断深入,再加上其具有的高精度、无损、非接触等优点,超声的应用变得越来越普及。超声波液位测量有许多优点:检测元件可以不与被测介质接触,可测范围广;可测量低温介质的液位;寿命长;能够定点和连续测液位;安装维护方便。超声波测量已成功应用于江河水位、化学和制药工业、食品加工、罐装液位等多种领域。


1 测量方法

超声波脉冲回波法是液位测量中应用较广的一种方法,通过测量超声波传播时间来测量距离。超声波脉冲回波检测法的基本原理是:发射声波换能器由脉冲信号激励发出超声波,通过传声媒介传到被测液面,形成反射波;反射波再通过传声介质返回到接收换能器,传感器把声信号转换成电信号,由仪表计算出超声波从发射到接收所传播的时间,再根据超声波在介质中传播的速度,利用式(1)确定液位高度:

式中:H表示探头与容器底部的距离;L表示超声波传输距离的50%;v表示超声波声速;t表示超声波传播时间;h即所测液面实际高度。

系统采用软件滤波方式判断超声波回波信号的起始点,使用AD转换器将回波信号转换为数字信号送到ARM处理器,利用ARM处理器较强的信号处理能力对回波信号进行数字滤波、数值处理,确定超声波传播时间。


系统选用Philips公司的LPC2119芯片作为控制运算处理器。LPC2119是基于一个支持实时仿真和跟踪的16/32位ARM7TDMI-S CPU,并带有128 KB嵌入的高速FLASH存储器,具有高性能、低功耗的特点。LPC2119芯片内部集成2个CAN控制器,符合CAN规范CAN2.0B、ISO11898-1,可访问32位寄存器和RAM,单个总线数据波特率可达1 Mb/s,全局验收过滤器可识别几乎所有总线的11和29位Rx标识符,验收过滤器为选择的标准标识符提供了FullCAN-style自动接收。


2 系统硬件设计

2.1 测量电路设计

测量电路的核心是超声波发射及接收电路,设计为收发一体式,如图1所示。使用LPC2119芯片内部定时器0产生40 kHz的激励脉冲,输至NMOS场效应管Q1的栅极。当控制端PO.22 OUT为低电平时,NMOS场效应管Q1截止,PMOS场效应管Q2的Ugs接近零电压,Q2截止而输出低电平;PO.22 OUT为高电平时,Q1导通,Q2的栅极电压由电阻分压而得,使Ugs小于其2 V左右的门限电压而使Q2导通,输出高电平。所以通过控制端,使发射电路产生正向高压脉冲以激励超声波探头。+50 V高电压由AD公司生产的开关型DC-DC变换器ADPllll提供。

用LPC2119芯片CAN总线和DSl8B20设计的智能超声液位变送器

在接收电路中使用二极管的钳位作用防止高压发射脉冲进入接收电路。电路中的两个肖特基二极管和限流电阻将输入电压限制在O.3 V以内,但对较小的回波信号不起作用,实现了超声波发射、接收电路一体化。电路需要对微弱的回波信号进行放大,使用OP27运算放大器将回波信号放大200倍。电容C20滤掉回波信号中的直流成分。


系统采用数字滤波、数值处理的方法找超声波的回波起点,因此需要将放大后的回波信号进行模数转换。本系统采样频率定为1 MHz,模数转换电路使用德州仪器公司的8位高速A/D转换器ADS930。电路采用交流耦合连接方式。经过A/D转换后的回波信号送入运算控制器进行处理。


超声波在空气中的传播速度会随温度的变化而变化,超声波传播速度c与环境温度T的关系如式(2):

为了减少测量误差,需要进行温度补偿。系统采用DALLAS公司的一线式数字温度传感器DSl8B20芯片进行温度补偿。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。使用DSl8B20进行精确的温度转换,I/O线必须在转换期间保证供电,系统采用外接电源方式给DSl8B20芯片供电。温度补偿采用查表法,首先建立温度与声速的二维关系表,处理器在读出DS18B20测得的温度值后进行查表,得到当时声速。由于表格中的温度点有限并且是离散分布的,采用小区间插值法以提高精度。软件编程严格遵循一线总线读写时序。


2.2 CAN总线通信接口设计

CAN总线通信接口由CAN总线控制器和CAN总线收发器组成,CAN控制器作为CAN总线的数据链路层,CAN总线收发器作为CAN总线的物理层。LPC2119内部集成的CAN控制器作为CAN总线控制器,它具有完成CAN通信协议的全部必要特性。PHILIPS公司的CAN总线收发器PCA82C250提供CAN总线控制器和物理传输线路之间的接口。电路如图2所示。

用LPC2119芯片CAN总线和DSl8B20设计的智能超声液位变送器

系统选用TDl,RDl引脚CAN控制器。CAN总线收发器PCA82C250的RS引脚接一斜率电阻R35用于选择PCA82C250的工作模式:高速、斜率控制和待机。R35短路接地可选择高速工作方式;若RS引脚接高电平,则电路进入低电平待机方式,发送器关闭,接收器转入低电流,有利于降低系统功耗;在斜率控制下,电阻R35的大小可根据总线的通信速率适当调整,一般在16~140 kΩ之间。


系统使用高速光耦6N137和DC-DC电压隔离模块B0505S组成的隔离电路加强了电路的抗干扰能力,确保CAN总线遭受严重干扰时能够正常运行。PCA82C250的CANH和CANL引脚各自通过一个10 Ω的电阻与CAN总线相连,电阻起限流的作用,保护PCA82C250免受过流的冲击。在CANH和CANL与地之间并联2个30 pF的小电容,可以滤除总线上的高频干扰并且具有一定的防电磁干扰的能力。在两根CAN总线接入端之间并入瞬态电压抑制二极管(TVS管),当CAN总线串入干扰电压时可通过TVS管的短路起到一定的过压保护作用。


3 系统软件设计

系统软件设计主要包括测量程序和通信程序两部分。其中,测量程序的关键是对超声波回波信号的处理;通信程序的关键是CAN总线控制器的初始化,数据的发送和接收。


3.1 回波信号处理程序的设计

系统采用数字滤波方式对回波信号进行处理,选用IIR带通滤波器进行数字滤波,然后进行数值处理,识别接收波形的起始点。系统设计通带频率范围为[35 kHz,45 kHz],通带波纹最大衰减为O.01 dB,阻带波纹最小衰减为60 dB,采样频率为1 MHz。可用高通及低通各为4阶的带通椭圆型滤波器来实现。系数为:b=(O.001 O,-O.007 6,0.024 8,-0.047 4,O.058 4,-O.047 4,O.024 8,-0.007 6,0.001 O),a=(1.000 O,-7.579 2,25.370 1,-48.974 1,59.623 8,-46.877 5,23.244 5,-6.647 O,O.839 5)。此滤波器极点均在单位圆内,滤波器是稳定的。图3是IIR数字滤波器的幅度与相位特性曲线图。


3.2 通信程序的设计

通信程序的设计主要包括三部分:CAN控制器的初始化,CAN总线数据发送,CAN总线数据接收。通过编写LPC2119芯片内部CAN控制器寄存器来实现软件通信功能。

CAN总线控制器只需要进行少量的配置就可以进行通信,其基本初始化流程如图4所示。其中,硬件使能和配置引脚连接、软件复位、设定通信波特率、配置验收过滤器、退出复位模式是必须的初始化部分。

CAN控制器初始化程序如下:


CAN控制器初始化后,可以进行数据发送或接收。LPC2119内部每个CAN控制器配有3个独立的发送缓冲寄存器,在发送时根据情况选择3个缓冲之一,把数据写入缓冲区,启动发送。若选择第一缓冲,程序如下:


CAN控制器根据CAN2.0B规范来对发送和接收错误进行计数、处理。

4 结语

基于CAN总线智能超声液位变送器选用高性能、低功耗的ARM处理器芯片LPC2119;利用LPC2119芯片内部的CAN控制器和CAN总线收发器PC-A82C250构建性能优异的CAN总线通信接口,信号传输可靠、实时、灵活;由一线式数字温度传感器DSl8B20芯片完成温度补偿功能。先进的处理器加强了液位计的回波处理能力,采用数字滤波,提高了液位的测量精度。


关键字:CAN总线  DSl8B20 引用地址:用LPC2119芯片CAN总线和DSl8B20设计的智能超声液位变送器

上一篇:基于ARM7内核LPC2119芯片实现双向变换器的设计
下一篇:LPC2119简介 μC/OS-II在LPC2119上的移植

推荐阅读最新更新时间:2024-11-02 03:26

基于车联网的车辆信息远程搜集数据系统
车联网,是指装载在车辆上的电子标签通过无线射频等识别技术,实现在信息网络平台上对所有车辆的属性信息和静、动态信息进行提取和有效利用,并根据不同的功能需求对所有车辆的运行状态进行有效的监管和提供综合服务。 车联网的概念在20世纪60年代已经先后出现在美国、欧洲与日本等发达国家和地区,并先后发展起ITS、IVHS、RTI、VICS等车联网系统。在国内,全国第四届GPS运营商大会,车联网的概念被首次提出,得到广大专业人士的认同;在无锡举行的中国国际物联网大会上,国家将车联网列为我国重大专项第三专项中的重要项目,中国的车联网由此起步。到现今,一些供应商所提供的车载系统中,已经基本实现智能导航、保养预约、咨询查询等功能,更方便车辆出行,在一
[嵌入式]
CAN总线混合动力汽车电控系统的设计与实现
混合动力汽车是一种由内燃机和电动机混合驱动的汽车,其主要特点是节能、环保。这种汽车在起步时用电动机驱动,消除了内燃机起步时由于燃烧不充分而排黑烟的现象。在汽车减速或刹车时,利用发电机把动能转化成电能,贮存到蓄电池中,实现能量回收达到节能的目的。由于这种汽车是内燃机和电动机两种动力并存,仅用传统的针对内燃机的电控系统无法实现两种动力的最佳配合,因此开发混合动力车的全新电控系统是十分必要的.本文以一种电机并联式混合动力汽车成功实现为背景,从系统角度介绍了混合动力汽车电控系统结构、功能及效果。  并联式混合动力驱动结构简介  并联式混合动力汽车的驱动系统结构见图1。发动机通过机械传动装置与驱动桥连接,电动机通过动力复合装置也与驱动
[嵌入式]
CAN总线到Ethernet网的网关研究实现
  引言   CAN总线是一种开放式、数字化、多点通信的控制系统局域网络,是当今自动化领域中最具有应用前景的技术之一。由于CAN总线具有通信速率高、开放性好、报文短、纠错能力强以及控制简单、扩展能力强、系统成本低等特点,越来越受到人们的关注。以太网具有快速、灵活、方便、可靠的特长,如果把现场总线与以太网互联的话,可实现过程控制中从设备层到管理层的一体化,使得企业可以广泛地应用如互联网、无线通信、智能设备和决策支持系统等新技术,以达到提高效率和降低成本的目的。   硬件设计   硬件选择   要实现现场总线设备接入Internet,关键就是要实现TCP/IP 协议、以及传输信息介质的选择。笔者用SX52微控制器作为处理器
[嵌入式]
SylixOS 基于AT91SAM9X25的CAN总线传输流程解析
概述 本文档是在AT91SAM9X25平台上进行SylixOS CAN总线驱动开发时,对CAN总线底层传输流程的解析。 适用于正在学习CAN总线驱动的技术工程师。 技术实现 CAN总线的传输流程可以分成两个部分: 一部分是CAN总线的发送流程,主要工作是将准备发送的数据填充到对应的寄存器,并使能开始传输位和邮箱中断位;另一部分是CAN总线的中断处理流程,主要工作是对触发中断的中断源进行判断,并对不同的中断进行相关处理。 CAN总线的发送流程 在AT91SAM9X25平台上,CAN总线发送流程如图 21所示。在填写数据的帧ID时,必须要将邮箱设置为禁用模式。正常情况下,当我们将数据填充完成,开始发送数据时,就可以在总
[单片机]
SylixOS 基于AT91SAM9X25的<font color='red'>CAN总线</font>传输流程解析
解读CAN总线行车记录仪系统电路
  CAN总线是一种串行多主站控制器局域网总线,其主要原理是把车辆上相关控制器都联系起来,实现发动机控制器,变速箱控制器,ABS控制器,车身控制器,仪表及其它控制器的通信。CAN—bus系统除了使整车线束更少、更井井有条,整车重量更轻外,更大的好处是做到了全车信息即时共享。所开发的行车记录仪用于在车辆行驶过程中实时采集汽车CAN总线数据信息,并将数据存储在u盘中,以u盘为载体传输给PC机,可运用PC机上的软件对数据进行分析。克服了以往现场数据采集系统必须有一台计算机的模式,可实时了解汽车运行期间各种数据信息变化,同步记录行驶状况,在车辆长时间测试或行驶以后,记录的数据用于分析车辆行驶性能以及各部件的运行情况,方便了标定和设计工作的进
[嵌入式]
STM32--CAN总线应运
CAN 总线在控制领域使用的非常广泛,如今大多数CPU芯片外围都扩展CAN接口。本文重点介绍以STM32F103E系列芯片为基础介绍CAN 总线的使用方法。 1. 硬件基础 CAN总线工作需要两根数据线,RX和TX,即为输入总线和输出总线。一般CPU与外界通信需要接一个驱动芯片(这点很像UART接口),常用的CAN芯片主要有:SN65VHD230、PCA82C250T等,本系统使用SN65VHD230作为CAN接口芯片。而CPU提供的CAN接口为CAN_L和CAN_H。 2. 软件设计 在进行软件设计时,我们首先来看这样的一个结构体: typedef struct { uint32_t StdId;
[单片机]
上海通用汽车如何一分钟找到CAN总线的问题节点
上一篇《一分钟找到CAN总线的问题节点》引起了诸多CAN应用者的共鸣,上海通用汽车用这个功能,进行焊接机器人的日常维护,监测机器人CAN通信的信号质量,及时更换有隐患的节点。如图1所示。因为焊接机器人工作在比较严酷的电磁环境中,其CAN通信好坏直接影响汽车生产的效率和品质。所以快速找到问题节点并且予以更换是非常重要的。 图 1 上海通用焊接机器人 CANScope分析仪广州致远电子股份有限公司研发的一款综合性的CAN总线开发与测试的专业工具,集海量存储示波器、网络分析仪、误码率分析仪、协议分析仪及可靠性测试工具于一身,并把各种仪器有机的整合和关联;重新定义CAN总线的开发测试方法,可对CAN网络通信正确性
[汽车电子]
上海通用汽车如何一分钟找到<font color='red'>CAN总线</font>的问题节点
基于单总线温度传感器的多点测温系统设计
  0 引言   多点测温系统在工业领域及其国民生产中有广泛的用途。如在化工领域中,经常需要检测和控制反应釜中的液体的温度,使之能够稳定在一定的温度范围之内;在粮食储存以及加工过程中,会储存高水分的粮食,高水分的粮食极易升温发霉,因此粮食储存的测温显得尤为重要。以往的测温系统多采用热敏电阻,精度低、易损坏,且模拟信号远距离温度测量系统中,需要很好地解决引线误差补偿问题、多点测量切换误差问题和放大电路零点漂移误差问题等技术问题,才能够达到较高的测量精度。   因此,在温度测量系统中,具有足够的精度和实时性,控制足够的精度,并且尽可能具有较低的成本,这样的产品才具有实用价值。本文采用新型数字温度传感器DSl8B20,它具有体积更小
[测试测量]
基于单总线温度传感器的多点测温系统设计
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved