如何设计三通道LED驱动器

最新更新时间:2008-07-02来源: 电子工程专辑关键字:驱动器  电流  续流二极管  电平转换  并联电阻  齐纳二极管  系统变量  LEDV-I 手机看文章 扫描二维码
随时随地手机看文章

  固态照明正迅速成为机电工程与设计领域的热点之一。LED实现了灵活性与高效性的结合,这是传统照明技术无法比拟的。LED可以长时间提供稳定可靠的照明,而且采用小型封装,因此正在建筑和舞台照明应用领域得到广泛采用。但是,每种不同的照明应用都有其独特性,不同的市场领域需要具有不同特性的产品。因此,市场中集成电路的专业化趋势不断加强,也导致本来已经种类繁多的产品型号变得更加丰富多彩。可编程混合信号微控制器正得到快速采用,因为单个微控制器能集成脉宽调制器(PWM)、通信接口、放大器、比较器及数据转换器等多种外设。

  通过将上述外设的完美组合,可实现对功能丰富而强大的可调光降压转换器等器件的控制。用于LED驱动器应用的降压转换器应为电流模式调节器,因为LED是电流模式器件。我们从LEDV-I曲线可以看出,正向电压稍有变化,就会对电流产生较大影响。因此,任何LED驱动器电路的反馈都应视为电流。此外,我们应使用恒定电流,因为制造商会根据正向电流电平设定LED的颜色与强度。上述特性相当重要,因为我们要通过有关特性值来确保系统符合整体规范的要求。

  图1给出了典型的LED系统,包括通信接口、不同颜色的LED(每种颜色都代表一个通道)、智能化功能以及每个通道的恒定电流驱动器。通信接口可以为DMX512或DALI,这是两种标准的照明协议,此外也可以为ZigBee或无线USB接口。智能化功能可通过内置模数转换器(ADC)与LED调光外设的微控制器实现。ADC用于监控温度与LED电流等系统变量,完成系统监控与色彩混合任务。驱动器为通道中的每个LED提供恒定电流。驱动器的复杂性与质量决定了驱动器的价格。

  

  图1:典型的LED系统方框图。

  磁滞降压控制器

  在微控制器上集成LED驱动器有助于减小整体系统解决方案的尺寸。现在,几乎没有什么解决方案将开关模式电源(SMPS)这样的高功率元件与微控制器的智能化功能完美结合在一起。退而求其次,就是将SMPS的反馈与控制电路完美集成在微控制器中。如图1所示,CY8CLED16EZ-Color器件正好具备上述功能所需的模拟电路。在该设计方案中,SMPS拓扑为电流模式可控磁滞降压转换器架构(见图2)。

  

  图2:磁滞控制器。

  启动时,通过电感的电流开始上升,直至比较器正输入的电压大于比较器负输入的电压。随后,转换器将作为自由运行的振荡器,电流会在两个层面间充电和放电。

  ITH_HIGH与ITH_LOW的大小可由并联电阻、RIN与RHYST反馈电阻以及DAC输出电压通过下列等式计算得出。我们可以看到,RHYST值越大,ITH_HIGH与ITH_LOW的差就越小。

  

  

  合上PFET将启动充电过程(如图4a所示),电感器开始充电。比较器可通过测量并联电阻电压来监控电感器电流。当电流达到阈值ITH_HIGH时,就开始进入放电过程(如图4b所示)。在放电阶段,电流通过续流二极管放电。续流二极管保护电路元件免受电感反冲的影响,并且保持LED处于打开状态。LED中的电流超过ITH_LOW阈值后,充电过程再次开始。

  

  图4:降压转换器的充电阶段(图a)与放电阶段(图b)。

  转换器启动后进入充电阶段,直至电感器电流达到ITH_HIGH阈值。电流达到阈值所需的时间称作上升时间(trise),trise取决于输入电压与电感器电流值:

  ,其中,VF为串联LED的正向电压。

  由于上述方程式的分母是电感值,因此上升时间与电感值成正比例。缩短上升时间对调光非常重要,因为减小脉冲宽度有利于使用较高分辨率的调制器,但这并不是使用较小电感值的唯一原因。低值电感器(具有相当高的额定电流)从物理上说比高值电感器的体积更小,成本更低,同一尺寸封装的低值电感器比高值电感器支持的电流更高。

  平均电流误差

  图3显示了LED电流的理想波形,但没考虑比较器的响应时间(tr)。比较器的响应时间(tr)是指输出电压针对输入电压超过DAC参考电压改变状态所需的时间。如果将这个因素考虑在内,就会影响LED电流的过冲、纹波及平均值。平均电流误差要归因于比较器限定的响应时间以及电感波形的坡形不平衡引起的。请注意,在图3中,充电坡度比放电坡度更陡一些,这是由于输入电压大大高于LED正向电压而引起的。由于充电斜率大于放电斜率,因此比较器响应时间产生的平均电流也将大于图5所示的期望值。

  

  图3:理想的LED电流波形。

  

  图5:电流误差详图。

  实际峰值电流等于峰值电流阈值与峰值电流误差之和,而谷值电流则等于谷值电流阈值与谷值电流误差之和(如下列方程式所示)。除了比较器的响应时间外,我们从峰值电流计算式中还可看出,输入电压、电感值与LED正向电压都会影响峰值电流误差。我们从谷值电流算式中则可以看出,正向电压会影响谷值电流误差。

  

  ,其中,VD为续流二极管的正向电压。

  我们可根据电感容差与LED正向电压的差值计算出电流误差。但是,如果我们的系统采用了具备8:1模拟乘法器与可编程增益放大器的积分型模数转换器,那么我们也可用该转换器来测量电流误差。我们通过校正算法来测量并处理电流误差,随后再改变DAC的输出电压来设置新的阈值。

  

  图6:支持平均电流误差校正的磁滞控制器。

  电平转换电路

  如图7所示,当栅极Q1的逻辑电平为高时,栅极Q3通过分压器打开;栅极Q4短接至VIN将关闭栅极Q3。当栅极Q1的逻辑电平为低时,分压器中无电流通过,将栅极Q2连接至VIN,此时栅极Q4短接至地面,并打开PFET。这样,输入为高时,开关关闭,输入为低时,开关打开,这就说明了EZ-Color器件内置比较器的输出为什么会出现反相区。只要输入电压不超过晶体管Q2与Q4的VGS(MAX)值,如图7所示的电平转换电路就能正常工作。如果我们从VIN到源极Q2之间增加齐纳二极管与电容器,再在齐纳二极管的阳极至接地之间采用偏置电路,那么该电路就可适用于较大的输入范围。

  

  图7:电平转换器详图。

  利用软件工具实现更简化的解决方案

  

  图8:单通道的模拟模块布局。

  磁滞降压转换器要采用EZ-Color,需要将用户模块嵌入到PSoCDesigner中,以便在芯片的模拟段与数字段之间进行切换。如图8所示,比较器用户模块放在连续时间模块中,9位DAC放在两个开关电容模拟块间,提供其负输入。比较器的正输入通过4:1的多路复用器路由,输出路由至比较器数字总线,再经过反相,抵消电平转换器电路的反相区(如图8所示)。比较器数字总线发送数字信号至芯片的数字段,也是数字信号走线的地方(如图9所示)。

  

  图9:单通道的数字模块布局。

  以上各图显示了如何配置EZ-Color模拟与数字模块,以实施降压转换器。COMP_BUF模块路由比较器总线到数字段,随后它可路由到电源电路系统,不过不是直接路由到控制电路,而是与16位PWM数字模块的输出做AND操作,从而实现调光功能。图8和图9中的3个位置样本可放置在CY8CLED16部件上,从而实现3通道可调光输出的复合系统。

  利用3个降压转换器,每个通道都能通过高精度照明信号调制(PrISM)调光,或利用PWM,我们就能控制3通道LED系统的色彩。用8位微控制器完成色彩混合相当复杂,不过有些集成电路公司尝试了这种做法并取得了成功。PSoCExpress等软件工具具备预编写、预验证的色彩混合代码,使开发照明设计变得极其简单。PSoCExpress是一款支持用户界面功能的设计创建工具,也支持系统外设编码,可以通过拖放实现工作,并在GUI环境中连接至驱动程序。所生成的项目文件兼容于所有赛普拉斯的EZ-Color器件。

  应该采用哪种调光分辨率?

  您可能已经注意到了,本项目中采用了16位分辨率调光,之所以这样做,是因为在光照强度较低的情况下,我们需要16位来维持高精度的色彩控制。如果强度为100%,那么精确匹配就仅需要8位的分辨率,如强度为1%,则分辨率应为14.6位。EZ-Color中,16位分辨率的PWM调光频率为732Hz,远远高于肉眼所能看到的频率。PWM模块时钟频率设定为48MHz,就能获得这种调光频率。

  本文小结

  我们采用赛普拉斯的EZ-Color等混合信号微控制器控制LED照明系统,因为这种微控制器集成了ASIC实施所需的大部分功能。通过采用磁滞降压转换器,EZ-Color能提供低成本的SMPS拓扑,可用恒定电流驱动LED。集成式混合信号解决方案非常适合照明设计,不仅能降低元件成本,而且还能缩短设计周期。赛普拉斯的EZ-Color集成了SMPS控制、智能化色彩混合功能与DMX512接口,使其成为多种LED照明应用设计的便捷选择。

关键字:驱动器  电流  续流二极管  电平转换  并联电阻  齐纳二极管  系统变量  LEDV-I 编辑:孙树宾 引用地址:如何设计三通道LED驱动器

上一篇:基于DSP的广播级数字音频延时器
下一篇:国内外高端频率控制器件的技术比较

推荐阅读最新更新时间:2023-10-12 20:13

Diodes电机前置驱动器ZXBM1021简化速度控制
Diodes公司 (Diodes Incorporated) 推出单相无刷直流电机前置驱动器ZXBM1021,为多种消费性及工业产品内的散热风扇、排气扇、抽风机、电机和泵,提供多功能且小巧的变速控制解决方案。这个灵活的前置驱动器集成了PWM信号积分器及MOSFET缓冲器等常用外部元件,使设计人员得以大幅简化系统结构,以及减少整体电路板元件数量。 这款前置驱动器可通过直接运用外部PWM信号、直流电压信号或热敏电阻网络输入,严密控制电机转速。它集成了霍尔偏置和放大器电路,以确保与各种霍尔效应传感器相兼容。集电极开路频率发生器引脚提供转速输出,能够在外部监控旋转及速度。为防止在控制信号消失的情况下出现电机堵转或速度低于最低值,Z
[嵌入式]
如何保护马达驱动器与可再生能源系统中的IGBT
      电源转换电路经常被应用在马达驱动器或可再生能源的功率转换上,设计中包括可以将直流电压转换为交流电压的电源转换器,以便用来推动马达或连接到可再生能源系统的电网(图1)。 图1,交流-直流-交流转换器功能框图。 电源转换器的核心是以高频率运作,能够承受高直流电压、价格昂贵的功率组件,例如IGBT,这些功率组件提供的效率与可靠度是系统发挥最大化效能的关键。       光耦合器通常被应用在这类系统中来提供控制电路与高直流电压间的安全电气隔离,这些组件通常也拥有高共模噪声抑制(CMR, Common Mode Rejection)能力,以避免IGBT在高噪声环境下被错误驱动。       由于能够提供高输出电流进行精
[嵌入式]
MSP430 IO口拉电流电流问题
数字输入/输出端口有下列特性: □ 每个输入/输出位都可以独立编程。 □ 允许任意组合输入、输出。 □ P1 和 P2 所有 8 个位都可以分别设置为中断。 □ 可以独立操作输入和输出数据寄存器。 □ 可以分别设置上拉或下拉电阻。 一般是数字电路中讲到这个问题。 当数字电路的输出端,输出低电平的时候,外接器件将把电流, 灌入 数字电路的输出端。 当数字电路的输出端,输出高电平的时候,外接器件将从数字电路的输出端, 拉出 电流。 当一个LED接在 数字电路的输出端 和电源之间,输出端输出低电平的时候发光,这个LED就是灌电流负载。 当一个LED接在 数字电路的输出端 和地之间,输出端
[单片机]
马达驱动器在白色家电中的应用
  白色家电 / 业的发展趋势是用永磁同步电机(PMSM)代替感应电机。在最近几年中,感应电机的价格一直在上升,部分原因是全球钢和铜成本的上升,而PMSM的价格上升得比较缓慢。除了价格优势外,PMSM还具有更低的传导损耗、良好的低速扭矩、简单的速度控制和紧凑尺寸,使得它们极具吸引力。   从电机控制角度看,PMSM没有铁芯,不存在磁滞与饱和问题,因此设计起来更加简单。它们的速度仅仅取决于开关频率。此外,PMSM不要求控制器处理来自霍耳效应传感器的信号以监视相位电流,可以简单地使用嵌入在控制器内部的传感电阻来采样不同相位下的驱动器电流。   在不同国家和区域的白色家电市场中,文化和经济差异对电机控制设计有很大的影响,这将影响每
[嵌入式]
用钳形电流表寻找电路短路点
如果几条照明支路合用一只保险,当发生短路故障时,采用普通方法查找是比较麻烦的。 这时可先在熔断熔丝的两端,接入一只500W白纸灯泡,合上电源,白炽灯发亮。然后用钳形电流表小电流(5A)先钳测支路,出现最大电流的支路,就是存在短路处。然后在该支路逐灯前后钳测,找到短路故障点。排除短路故障后,500W白炽灯的亮度将明显减弱,说明故障排除。
[测试测量]
使用电流、电压表注意事项
1、电流表必须与负载串联,电压表必须与被测电压并联。 2、应根据被测量值的大小,选择适当的量程。 3、对于磁电系仪表,使用时要注意端子极性。 4、测量前,要弄清被测电流或电压的性质和波形,选择合适的仪表。
[测试测量]
LED驱动器IC的发展趋势
     德州仪器高级技术市场开拓工程师刘学超说,LED技术的发展需要驱动技术发展相配合。现今的LED市场规模为1亿美元,未来3~5年还将扩张10倍以上。       对于中国市场,美国国家半导体亚太区市场经理黎志远引用iSuppli公司对中国LED驱动器Ic市场的预测,在全球经济和电子产业沉陷衰退之际,中国LED驱动器Ic市场2009年仅增长1%,从2008年的1.153亿美元上升到1.16s亿美元。但是,2010年增速将会加快到9.6%,规模将达到1.277亿美元。预计2013年中国LED市场将达到1.39亿美元。       展望2010年。随着全球景气逐步回温,2009年出现衰退的汽车、通讯用LED驱动IC市场可望
[电源管理]
变频启动的优点和缺点 变频启动电流是额定电流的几倍
  变频启动的优点和缺点   变频启动是一种较为常见的电机启动方式,其优点和缺点如下:   优点:   1. 起动电流小:在启动过程中,变频器可以逐步提高输出频率和电压,让电机由低速慢慢启动,电机启动电流小,起动平稳。   2. 节能环保:相比于传统的直接启动方式,变频启动可以节省大量的能源,减少环境污染。   3. 维护成本低:由于起动时电机启动电流较小,因此对电机、传动机构等的损坏降低,延长了设备的使用寿命,同时运行稳定,减少了设备的维护成本。   4. 可调速:变频器支持对电机转速进行调整,可以根据不同的工作情况和需要来调整额定输出功率和速度的大小,满足不同的工作要求。   缺点:   1. 因为需要额外的变频器设备
[嵌入式]
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved