复合量程微加速度计的动态特性分析与设计

最新更新时间:2009-09-28来源: 电子设计工程关键字:复合量程加速度计  动态特性  频率响应  阻尼 手机看文章 扫描二维码
随时随地手机看文章

  1 引言

  随着硅微机械技术的不断发展,基于压阻原理的微加速度计已成为商品。由于硅的机械性能优良,这些微加速度计往往具有较高的抗过载能力。然而,有些物理过程存在相差上百倍的多个加速度值需要测量,需要测试的过载值从几g到上万g,若在整个过程采用高g 值加速度计进行测量和控制,它对低g值信号不敏感;若采用低量程加速度计,则不能精确测量高过载信号;若采用2个加速度计进行测量控制,由于安装位置的不同,使其测得的信号会产生位置误差,而且2个传感器都存在安装误差。因此抗高过载复合量程加速度计更适合现代发展的需求。

  2 设计原理

  不同量程的加速度计构成的传感器阵列,可在不同工作环境下满足相应测试和控制要求,并实现多参数测量和多功能控制。这里分析一种具有4个量程(10 g、100 g、500g、10000 g)的复合量程微加速度计。综合考虑加速度计的灵敏度和固有频率等问题,通过ANSYS仿真加速度计结构参数,得到复合量程加速度计是梁宽分别为 80μm、100μm、190μm、500μm的双端4梁结构。复合量程加速度计阵列结构如图1所示。

复合量程加速度计阵列结构

  3 动态特性分析

  压阻式加速度计可简化为由弹簧、阻尼、质量块构成的二阶自由振动系统,根据牛顿第二定律,可写出单自由度二阶系统的力平衡方程式:

公式

  通过变换式(1)得到系统的传递函数为:

公式

  式(3)的分子、分母同除以ωs2,可得到系统的幅频特性:

公式

  设公式则系统的幅频特性和相频特性可分别表示为:

公式

公式

  将结构参数和材料参数代入式(7)得到4个悬臂粱的固有频率0~10 g量程模块的固有频率为7 731.139 Hz,0~100 g量程模块的固有频率为8 642.250 Hz,0~500 g量程模块的固有频率为15 875.571 Hz,0~10 000 g量程模块的固有频率为26 092.304.Hz。

  由于结构参数、空气粘滞系数(η/=1.8x10-5kg/(m.s))、固有频率已知。所以阻尼比只随板间距的变化而发生变化。将已知参数代入阻尼比公式:

公式

  分别求出4个模块的阻尼比:0~10 g量程模块的阻尼比为0.706,0~100 g量程模块的阻尼比为0.632,0~500 g量程模块的阻尼比为0.532,0~10 000 g量程模块的阻尼比为0.467。

  固有频率ωs、阻尼比ζ、K=1/m,从而得到系统幅值、相位与λ之间的关系,分别由maple作图,如图2所示。

系统幅值

  图2中,幅频特性曲线纵坐标表示幅值与刚度之比,横坐标表示输入信号的频率与固有频率之比。相频特性曲线纵坐标表示幅频特性的幅角,横坐标也表示输入信号的频率与同有频率之比。频率范围以幅值3 dB对应频率为截止频率。分别计算出4个量程频响范同为0~2783 Hz,0~2679 Hz,0~4 1 27 Hz,0~5740 Hz。

  4 频率响应测试

  在被测量物理量随时间变化的情况下,加速度计的输出能否随输入量变化良好是一个很重要的问题。以上通过分析复合量程加速度计的动态特性,得到其理论频响特性。以下对封装完成的复合量程加速度计进行动态测试,图3为封装后复合量程加速度计(图中右边的硬币用以对比其大小)。

封装后复合量程加速度计

  复合量程加速度计的频率响应实验:使用振动台等设备,将复合量程加速度计及用作对比的传感器同时固定在振动台上,在10Hz~4 000 Hz范嗣内对加速度计进行扫频,分别得到复合量程加速度计4个量程的幅频特性和相频特性,仅以0~10 g量程单元和0~10 000 g量程单元的频率响应特性曲线为例,如图4和图5所示。

0~10 g量程单元的频率响应特性曲线为例

0~10 000 g量程单元的频率响应特性曲线为例

  这里频率范围均以幅值3 dB所对应的频率为截止频率,0~10 g量程单元的频率响应范围为0~2 587 Hz,0~10 000 g量程单元的频率响应范围大于4 000 Hz,对比理论和计算结果,两者基本吻合。从相频曲线可看出:随着频率增高,相位滞后也更加明显,与幅频曲线相符。

  5 结论

  设计一种复合量程微加速度计,首先根据理论分析出其频率响应范同,然后通过对复合量程加速度计动态特性的分析,建立复合量程加速度计动态测试系统,完成复合量程加速度计动态特性的测试,实验结果与理论计算结果基本吻合,0~10 g量程单元的频率响应范围为0~2 587 Hz,0~10000 g量程单元的频率响应范围大于4 000 Hz。

关键字:复合量程加速度计  动态特性  频率响应  阻尼 编辑:金海 引用地址:复合量程微加速度计的动态特性分析与设计

上一篇:基于符号模拟的电路中错误诊断方法研究
下一篇:新日本无线发放内置功率放大器语音开关样品

推荐阅读最新更新时间:2023-10-12 20:15

频率响应小信号电路图
增益提高技术,虽然大幅度提高了放大器的电压增益,但是电路变复杂了,频率响应必然受到影响,为了分析这种技术给主运放带来的影响,可以画出频率响应小信号等效电路图,如图所示。      图表明,电路的主极点是在输出点,负载电容大,输出电阻非常高,极点的位置在p1=1/(2πRoutCload)。主运放的第二个极点在点①处,电容是①点的寄生电容,Boot-ser的输入电容,M1管的Miller电容CGD,和M2管子的源极输入电容。位置为p2=gM2/(2πC1)。在频率响应中,一阶主极点引起的响应是指数逼近的响应,而其余的极点和零点则会引入非指数的响应,为了不过多地引入超调响应,或者是减慢响应速度,要求Boost
[模拟电子]
<font color='red'>频率响应</font>小信号电路图
示波器的频率响应及其对上升时间测量精度的影响
传统上,示波器的频率响应是高斯型的,是由许多具有类似频响的电路元件组合而成的,传统的模拟示波器就是这个样子,从它的BNC输入端至 CRT 显示,有很多模拟放大器构成一个放大器链注1。有关高斯频响示波器的特点,在行业内已经广为人知。 但鲜为人知的是当代高性能数字示波器所普遍采用的平坦频率响应。数字示波器中和高斯频响有关的只是很少的几个模拟放大器,并可用 DSP 技术优化其对精度的影响。对于数字示波器来说,还有一件重要事情是,要尽量避免采样混叠误差注2,而模拟示波器是根本没有这种问题的。与高斯频响相比,平坦型频率响应能减少采样混叠误差,我们在这里首先回顾高斯响应和平坦响应的特性。然后讨论这两种响应类型所对应的上升时间测量精
[测试测量]
示波器的<font color='red'>频率响应</font>及其对上升时间测量精度的影响
频率响应法-相对稳定性分析
频率响应法-相对稳定性分析 为了使控制系统能可靠地工作,不但要求它能稳定,而且还希望有足够的稳定裕量,使系统在环境发生变化或存在干扰的情况下仍能工作,这即为相对稳定性的概念。 在讨论系统的稳定裕量时,首先要假定开环系统是稳定的,是最小相位系统,即开环系统的零、极点均仅位于s的左半平面,否则讨论系统的稳定裕量是无意义的。 图5-49 I型系统奈氏图 为了说明相对稳定性的概念,图5-49为一典型的I型系统 曲线,其开环系统的传递函数为: 。根据奈氏判据可知,当 时,系统不稳定,奈氏曲线包围(-1,j0)点;当 时
[模拟电子]
<font color='red'>频率响应</font>法-相对稳定性分析
如何在隔离式电源中测量频率响应
  您在补偿隔离式 电源 的反馈回路时是不是感到无从下手呢?在您进行测量时,回路的断开位置将直接影响到这项工作的难度。   在选择TL431电路周围的补偿组件时,在一个特定的位置断开回路十分关键。我们可以选择在两个位置断开回路。   大多数工程师喜欢在图1显示的反馈电阻分压器的位置上断开回路。毕竟,我们在非隔离式降压电路中是这么做的。当我们在这款隔离式电源中也进行同样操作的话,内部回路会变成发电厂设备的一部分,并且使得方程式和设计过程变得复杂。当我们在分压器上断开回路时,我们必须:   1.检查内部开回路的稳定性。   2.然后,我们必须查看这个内部回路的闭环响应。闭合内部回路是发电厂设备,它由外部回路
[电源管理]
如何在隔离式电源中测量<font color='red'>频率响应</font>
天纳克的创新被动阻尼技术将搭载于梅赛德斯-奔驰C-Class
据外媒报道,汽车零部件制造商天纳克(Tenneco)宣布推出新天纳克OE Solutions® MCx阀门系统,且第四代梅赛德斯-奔驰C-Class将成为第一款配备该系统的汽车。 图片来源:天纳克 该MCx阀门架构提升了无源阻尼器的性能和可调性,并为乘用车提供一流的舒适性和操控性以及出色的调校范围。通过与Monroe OE Solutions®单管阻尼器集成,新阀门采用独立的平行流路,可适应所有活塞速度,允许客户在舒适性和动态控制间进行调整。 该阀门还提供开式排气调节功能,可建立两个额外的回弹和压缩调节参数,以实现卓越的滚动舒适性,并消除可能由不平坦或破裂路面以及车轮和轮胎缺陷引起的超低速振动。
[嵌入式]
天纳克的创新被动<font color='red'>阻尼</font>技术将搭载于梅赛德斯-奔驰C-Class
运用示波器的XY模式绘制动态特性曲线
示波器是时域分析的最典型仪器,也是当前电子测量领域中,品种最多、数量最大、最常用的一种仪器,使用示波器可直观地看到电信号随时间变化的图形。更广泛的,只要能把两个有关系的变量转化为电参数,分别加至示波器的X(CH1)、Y(CH2)通道,设置为XY显示模式,就可以在LCD屏幕上显示这两个变量之间的关系。一般我们会使用XY模式来显示李萨如图形,通过图形来判断两个信号之间的相位差,其实还可以使用XY模式来绘制一些特殊的特性曲线,能够清晰直观的展现这两个变量的关系。 SIGLENT的SDS2000系列超级荧光示波器(SPO)兼具数字示波器和模拟示波器的优势,11万次每秒的刷新率和256级辉度显示能够很好地实现模拟余辉功能,
[测试测量]
以单片机为核心的频率响应测试仪方法设计
引言 在模拟电路设计和调试过程中, 测量系统的频率响应特性是非常重要的一步。而市场上能购买到的具有分析系统频率响应的仪器通常都比较昂贵, 而且体积较大, 一般很难接受。为此, 本文介绍了一种成本较低、体积小、操作简单, 能满足大部分系统测量要求的频率响应测试仪的设计方法。 1 系统总体设计 本文介绍的是基于 单片机 C8051F060和频率合成芯片AD9834开发的、可测量系统频率响应曲线的仪器系统。其系统总体设计框图如图1所示。 图1 系统总体设计框图。 本设计中的单片机C8051F060可控制扫频信号源, 以产生一系列不同频率的正弦信号, 然后将这些信号进行滤波、放大后作为被测对象的输入送到被测网络中, 而被测对象的
[测试测量]
以单片机为核心的<font color='red'>频率响应</font>测试仪方法设计
电源设计小贴士 3:阻尼输入滤波器(一)
开关调节器通常优于线性调节器,因为它们更高效,而开关拓扑结构则十分依赖输入滤波器。这种电路元件与电源的典型负动态阻抗相结合,可以诱发振荡问题。本文将阐述如何避免此类问题的出现。 一般而言,所有的电源都在一个给定输入范围保持其效率。因此,输入功率或多或少地与输入电压水平保持恒定。图1显示的是一个开关电源的特征。随着电压的下降,电流不断上升。 图1 开关电源表现出的负阻抗 负输入阻抗 电压-电流线呈现出一定的斜率,其从本质上定义了电源的动态阻抗。这根线的斜率等于负输入电压除以输入电流。也就是说,由 Pin = V·I,可以得出 V=Pin/I;并由此可得 dV/dI=–Pin/I2
[电源管理]
电源设计小贴士 3:<font color='red'>阻尼</font>输入滤波器(一)
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved