一种新型并条机断条光电自停装置的设计

最新更新时间:2009-10-13来源: 现代电子技术关键字:纺织电气  并条机  断条自停装置  红外接收模组  微处理器 手机看文章 扫描二维码
随时随地手机看文章

  0 引 言

  并条机断条自停装置(简称自停装置)的可靠性直接影响并条机的产条质量,堵条、罗拉缠绕和积花(通称为堵条)则会影响生产效率,甚至会损坏设备。因此对并条断条、堵条的快速、准确检测具有实际意义。早期的自停装置为机械接触式,因可靠性差、与棉条接触和设备运行速度的提高等因素而逐步被淘汰,高架并条机已不采用,现在广泛应用的是光电对射式自停装置。并条机断条自停装置一般不具有堵条自停功能,存在易损坏、智能化程度低和调试应用不便的缺点,检测单元的位置和角度稍有变化即会影响检测的可靠性,造成漏检和误停车。随着变频器应用的增多,抗干扰能力弱的缺点也显现出来。

  光电自停装置的工作原理与对射式光电接近传感器的原理基本相同,一般采用红外发射二极管发射某一频率的红外光,用光敏器件接收透射光并转换为电信号,含有光路状态信息的信号由放大器放大并经检波,确定是否有物体经过光路。为提高可靠性,接收器件常用滤光封装滤除自然光,避免光电转换器件饱和;采用特定频率的红外调制光,抑制环境突变光干扰。随着技术的进步,集成化、智能化的光电传感器也不断出现。但并条机应用的各种光电自停装置一般不具有智能化检测特点,集成化程度较低,光电转换器大多采用光敏二极管或光敏三极管分离元件构成,接收器件仅完成光电信号转换功能,信号放大和检波需设计外围电路支持,因此接收器件的性能是光电自停装置电路设计的技术关键。为此,基于集成化IRM设计了一种新型智能化自停装置,统一了并条机前后光电路设计,在FA302,FA306等型号的并条机上应用证明,其检测可靠,避免了设备误停。

  1 自停装置系统构成

  1.1 系统构成与设计特点

  如图1所示,新型光电自停装置由四路对射式光电断条检测单元、两通道对射式光电堵条检测单元和自停控制器构成。控制器具有双控功能,断条自停和堵条自停分别输出,与检测单元采用三总线连接,为检测单元提供电源和接收停车信号。检测单元由红外线发射器和接收器组成,前后光电检测单元的电路原理相同,因安装方式不同其外观尺寸有差别。发射器工作状态受接收器控制,二者通过光路构成一个闭环检测系统。为防止光路间相互干扰,发射与接收器均安装光学透镜系统,使发射光到达接收器的光斑直径约为20 cm,因此,接收器具有较大的接收和调整范围。

新型光电自停装置由四路对射式光电断条检测单元

  断条检测单元具有自动复位功能,检测到断条后输出停车信号1 s即自动复位,当接收器持续接收不到光信号时间超过5 s,则发出故障指示,提醒维护。堵条检测单元检测到堵条故障,则持续输出停车信号,防止启动设备造成设备故障,堵条故障被排除后方能自动停止输出停车信号。考虑电缆连接的可靠性与方便性,发射器和接收器采用电话水晶头连接器与总线连接,安装、更换方便。

  1.2 检测单元构成框图

  参见图2,发射与接收单元虽是分体结构,但电路设计为一整体系统。主要由微处理器电路、动态光强控制电路、红外发射电路、IRM接收电路及输出电路构成,由控制器提供工作电源。微处理器作为智能控制单元,与动态光强控制电路、发射电路、IRM接收电路,通过光路构成一闭环控制系统,使发射与接收具有智能化检测的特点。停车信号通过输出电路送到自停控制器,控制设备停车。

检测单元构成框图

  考虑到应用环境存在飞花、落尘和设备震动等因素,提出一种以微处理器为核心的检测方案,采用在遥控领域应用广泛的IRM作为检测器件,简化电路设计,提高稳定性;应用调制红外光发射,排除环境光干扰;以发射、接收检测反馈应答工作模式,提高检测可靠性;利用智能化的可变光强发射技术,抑制因透镜面落尘、发射器与接收器位置变化造成的误检测。应用证明在透镜稍有落尘的情况下,检测可靠。

  2 自停装置的电路设计与原理

  2.1 IRM简介与传输特性

  IRM-3638型红外遥控接收模组,将光探测器、前置放大器、检波电路集成封装在一起,以实现信号的接收、放大与检波。无外围元件,输出与TTL和CMOS兼容,可直接与微处理器接口。具有可靠性高、抗干扰能力强、功耗低(2 mA@5 V)、灵敏度高的优点。

  IRM适宜对波长为940 nm、调制频率为38 kHz红外脉冲信号的接收。当信号强度达到IRM的接收要求时,只需接收6个脉冲就能可靠触发输出低电平信号,如图3所示。若IRM连续接收38 kHz的红外脉冲信号,将持续输出低电平;IRM接收不到符合要求的红外信号时将输出高电平。因此若物体经过或遮挡接收光路,IRM接收的将不是连续脉冲光或接收不到脉冲光,光电自停装置的接收器正是利用了IRM这一检波传输特性,微处理器通过检测IRM的输出状态,可获取光路的被遮挡的信息,并且自停装置省掉了放大器和检波电路设计,提高了系统稳定性。

IRM传输特性

  2.2 动态光强控制红外发射电路

  红外线发射采用了动态可变光强设计,见图4。L1为红外发射二极管,T1,T2为PNP型三极管。当T2截止时,L1的限流电阻为R1+R2;T2饱和导通时短路R2,L1的限流电阻为R1,因此通过控制T2的导通状态可控制通过L1的工作电流大小,实现光强控制。微控器通过T1以频率为38 kHz、占空比为1/2的脉冲驱动红外发射管L1产生脉冲红外光。系统上电时微处理器控制T2截止,以小光强进行接收检测,若能够正常接收,系统将维持小光强发射进入工作状态,以提高发射器寿命。若不能正常接收,T2将导通提高发射光强,这时若能正常接收,系统将以较大光强进入工作状态,同时系统发出提示清洁透镜或调整接收器位置的信号。若仍不能正常接收,则自动关闭接收器输出,维持其他单元系统工作,并发出故障提示信号。这种设计方法,使发射与接收具有反馈应答特征,红外发射光强度得到动态控制,使接收器自动适用接收状态的变化,有利于提高检测可靠性。

动态光强控制红外发射电路

  2.3 自停装置单元电路原理

  电路的信号处理和控制核心采用了Microchip Technology Inc.生产的PIC12C508A微处理器。它基于COMS设计,采用RISC结构,片内程序存储器EPROM和数据存储器RAM,并集成了上电复位电路(POR)、时钟振荡器(INTRC)、看门狗定时器(WDT)等功能单元。具有小型化封装(8-Lead SIOC)、低功耗(2 mA@4 MHz)、高性价比的优点,为接收器的小型化设计提供了方便。自停装置的电路设计充分利用了其内建功能,提高了集成度,降低了系统成本。

  电路原理如图5所示,图中电阻R1,R2,R3,R4,红外发射二极管L1、三极管T1,T2构成发射电路,由U1的GP4,GP5口输出控制信号驱动。IRM3638、电阻R5、电容C2构成红外接收电路,R5与C1的作用是与发射电路的电源隔离,防止信号串扰,稳定IRM的供电。电阻R6。、三极管T3构成输出电路,为使各单元的输出能够采用线“或”式向自停控制器输送停车信号,采用集电极开路(OC)输出。L2为共阳极红绿双色LED,与R7,R8构成状态指示电路,由U1的GP0,GP1口驱动。正常接收时显示绿色;提醒清洁时显示橙色;输出停车信号时显示红色;接收故障时为橙色闪烁,可根据显示状态了解接收器工作情况。

发射接收单元电路原理

  U1软件系统产生的38 kHz脉冲信号由GP4输出,经R3,T1驱动L1发射红外脉冲光信号。接收模组IRM接收到均匀间隔的连续脉冲时输出低电平,U1控制GP2处于低电平,T3处于截止状态,接收器输出电路呈高阻态。光路有棉条经过时,光路被遮挡,作用到接收器的光脉冲信号出现暂时中断,IRM输出高电平,高电平持续时间等于被遮挡时间。U1将通过GP3循环检测IRM的输出,确定是否有棉条经过光路或堵条遮挡光路。当GP3为高电平时,U1软件系统抗干扰确认后,GP2输出持续1 s的高电平,使输出电路饱和导通,向自停控制器提供停车信号。

  实验证明,设备运行状态下棉条断裂下垂掠过光路的时间大于等于20 ms,微处理器软件系统对IRM的输出信号进行软件抗干扰处理,过滤高电平持续时间小于20 ms的输出脉冲,使飞花干扰得到彻底抑制。检测过程中,IRM仅用于接收并初步判断是否有棉条经过光路,其输出信号并不直接控制输出电路,而是送微处理器进一步确认。确认过程一方面能排除干扰,另一方面还对发射电路反馈控制信息,以稳定检测,避免了干扰和输出抖动,因此接收与发射在检测过程中具有反馈应答的智能化特征。

  2.4 自停控制器电路原理

  自停控制器电路原理参见图6,图中IO1,IO2为接口接线端子;J11,J12为断条停车继电器J1的触点输出;J21,J22为堵条停车继电器J2的触点输出;AC,AC为12 V交流电源输入端子,输入电压经全桥B1整流并经C1,C2滤波后输出直流电压VCC,为J1,J2供电;VCC电压还经三端稳压器V1稳压后为发射接收单元提供+5 V电压。IN1,+5 V,VSS为断条检测单元系统总线;IN2,+5 V,VSS为堵条检测单元系统总线。L1,L2分别为两种停车方式的动作指示LED。三极管T1与电阻R2,R3构成J1的驱动电路,二极管D1用于保护T1,驱动电路的输入端连接IN1。三极管T2与电阻R4,R5构成J2的驱动电路,二极管D2用于保护T2,驱动电路的输入端连接IN2。

自停控制器电路原理

  设四路断条检测单元的输出分别为OC1,OC2,OC3,OC4;两路堵条检测单元的输出分别为OC5,OC6,则断条停车的条件为:

公式

  这种线“或”的逻辑接口设计,可方便地在总线上连接多个发射与接收单元,即无论哪一路输出低电平,都会引起自停控制器输出停车控制信号,而单元之间不会产生相互影响。

  3 自停装置的程序设计

  PIC12C508A微控器,采用精简指令集系统,除跳转指令外绝大多数指令周期为1μs@4 MHz。为提高抗干扰能力,启用片内WDT用于程序监控。另外,用软件对输入信号进行了抗干扰处理,过滤脉冲宽度10 ms以下的输入干扰。堵条检测软件与断条检测软件基本相同,停车输出控制时间有差异,堵条停车要待故障清除才释放停车输出。

  3.1 软件流程图

  系统上电后微处理器先进行初始化设置,包括状态字设置、程序监控设置、输入、输出口设置、时间常数设置,然后进行光路接收测试,先以低光强测试,接收异常则加强发射光强度继续测试,若仍异常则退出检测,提示故障信息。接收正常进入主程序,进入主程序后在循环检测输入过程中产生38 kHz的脉冲信号。软件系统包括初始化程序、主程序、测控程序和38 kHz脉冲输出子程序,初始化检测和主程序软件流程图如图7所示。

初始化检测和主程序软件流程图

  3.2 软件产生38 kHz脉冲子程序清单

  为简化电路设计,通过合理设计软件系统,由软件产生38 kHz调制脉冲信号,在测试程序和主程序两次调用间隙检测IRM输出。这个间隙时间为脉冲周期的一半,即13 ns。微处理器的指令周期为1 ns,系统能够执行13条指令,足以实现检测IRM输出并完成程序跳转(2~4 ns)。为稳定接收,每次调用连续循环发射红外光1 ms,并在程序中嵌入复位看门狗(Watchdog)命令,监视微处理器运行,防止强干扰造成系统运行异常。程序清单如下:

程序

程序

  4 结 语

  智能化的光电自停装置在设计上充分考虑了其应用现场的环境条件,将应用广泛、价格低廉的遥控接收器件和微处理器应用到电路设计,并采取了IRM内部集成放大和检波功能、动态光强控制、软件抗干扰等多项措施。充分利用了微控器软硬件资源,电路简洁、原理简单,提示信息全面。系统具有低功率消耗特点,每个发射与接收单元的工作电流小于30 mA@DC 5 V。在附加了堵条检测功能的条件下,系统仍具有扩展性,现场应用取得了较好的效果。

关键字:纺织电气  并条机  断条自停装置  红外接收模组  微处理器 编辑:金海 引用地址:一种新型并条机断条光电自停装置的设计

上一篇:Microchip推出面向计量应用的新一代模拟前端器件
下一篇:产业创新环保先行 元器件大厂步入绿色时代

推荐阅读最新更新时间:2023-10-12 20:15

为并行计算寻求多种途径
  电子产业没有投入足够的时间、精力以及资金去解决并行计算中迫切需要的的技术突破。是时候在这个领域投资多个大型项目,多方利益相关者需要快速步入这个板块。   David A. Patterson是美国加州大学伯克利分校有经验的计算机科学教授及研究员,描述了这个问题的严重性。   微处理器制造商已经碰上了“功耗壁垒”,破坏了他们传统的设计技术,并且使他们趋向多核架构。但是这只是将问题转移至并行软件的需求,而并行软件是研究员在过去40年进展较小的领域。   如果研究人员不解决这个问题,多核架构将快速超越软件的能力。如果新的软件不能利用改进的芯片,以此为依靠的计算机产业和其他许多产业的增长将充满危险。针对这种挑战,产业
[焦点新闻]
基于微处理器的HID电子镇流器原理
一般设计HID电子镇流器采用专用芯片,而这些芯片功能相对单一。没有开路、短路检测功能,MC 34 26 2芯片进行功率因数校正(APFC),同时为HID灯提供400V的直流电源。其工作过程是,利用零电流检测器检测电流k (图1),当电流为零时启动MOs管Qo导通;检测输出电流I.与之对应·的电压V,,通过和MC34262内计算产生的阑值电压Uc,比较,若V,大于VC,则关MOs管Qo。在MC34262芯片的控制之下,有源功率因数校正电路产生约25kHz的高频振荡,达到校正功率因数的目的。阂值电压: 电子镇流器的微处理器(MCU)具有全桥转换功能,由高1低驱动器(lR2 101)驱动4个MOs管,由于HID灯工作在高频
[单片机]
基于<font color='red'>微处理器</font>的HID电子镇流器原理
飞思卡尔微处理器打造更经济实用的泊车辅助系统
32位MPC5604E MCU集成了以太网连接和视频压缩功能,有助于降低成本并为更广泛的车型提供更加安全、高效的泊车功能 2011年6月13日,德州奥斯汀市讯 —飞思卡尔半导体 日前推出新的32位Qorivva微控制器(MCU),该产品基于Power Architecture®技术,目的是使过去只有在豪华汽车中才能见到的环绕摄像泊车辅助系统变得更加经济适用并普及到更广泛的车型中。 Qorivva MPC5604E 32位MCU通过快速以太网传输高分辨率的压缩视频数据,可以提供360度车周全景,从而实现更加安全、简便地泊车。 汽车通常需要4或5条低压差分信号电缆来传输视频数据,每条电缆的价格约合10美元。 对视频信号进行压缩
[单片机]
电子工程师们,何为微处理器理想之选
在中国电子设计与制造企业中,电子工程师们目前可以选择的微处理器的品牌达几十家,其中包括欧美、日、韩、台湾以及大陆的众多原厂品牌。还包括有ARM、 PowerPC、MIPS、SPARC等多种内核与架构的处理器。eMRG通过在多家电子工程师社群网站上做在线调查,发现主流品牌的微处理器在价格、性能、规格和供货等方面的对比结果。下面是一些本次调查的数据报告,供大家参考。   一、首选处理器的品牌      从调查看,位列前五位的品牌应该是目前中国厂商用得最多的处理器厂商,TI和ST的领先很明显。   二、处理器的价格评分      MediaTek、展讯和AMD给人的印象应该是价格不错,ST和nVidi
[模拟电子]
电子工程师们,何为<font color='red'>微处理器</font>理想之选
恩智浦推出低成本Cortex-M0微控制器
  恩智浦半导体(NXP Semiconductors)日前宣布,旗下基于ARM Cortex-M0的LPC1100微控制器 系列产品将于12月分销上市。恩智浦LPC1100是市场上定价最低的32位微控制器解决方案,其价值和易用性比现有的8/16位微控制器更胜一筹。该控制器性能卓越、简单易用、功耗低,更重要的是,它能显著降低所有8/16位应用的代码长度。初期面市的LPC1100系列有15种产品,能满足所有那些寻求用可扩展ARM架构来进行整个产品开发过程的8/16位用户,满足其产品开发无缝整合需求。   恩智浦半导体副总裁微控制器部门兼总经理Geoff Lees先生表示:“现有的8位架构萌生于早期的半导体业有很多局限:地址范
[嵌入式]
基于CPLD的DSP微处理器与CAN控制器接口设计
引 言 近几年来,随着低价位DSP芯片的出现,他已被广泛应用到控制与测量领域中。国内的DSP芯片以TI公司的TMS320系列为主流。这种微处理器对外的数据和地址总线结构形式为非多路复用方式,不能与多路复用形式的外围接口芯片(如CAN控制器SJA1000)直接相连。国内、外也没有一款专用集成芯片来实现非多路复用方式到多路复用方式的转换。 文献 提出了一种转换方法,是将DSP的数据线作为CAN控制器的数据地址复用线,用DSP的地址线A0作为地址、数据选择线。A0=1时,地址有效;A0=0时,数据有效,即用奇数地址传送地址,用偶数地址传送数据。虽然此方法实现起来电路简单,但在编程时,程序员必须考虑发送的数据何时作为CAN控制器的地址,何时
[嵌入式]
Dialog宣布其EcoXiP™ Octal xSPI闪存兼容瑞萨高性能RZ/A2M微处理器
领先的电源管理、充电、AC/DC电源转换、Wi-Fi、低功耗蓝牙(BLE)技术供应商Dialog半导体公司今天宣布,其收购Adesto Technologies后新增的产品EcoXiP™ octal xSPI非易失性存储器(NVM)已经过优化,将与瑞萨电子基于Arm®的RZ/A2M微处理器(MPU)搭配使用。RZ/A2M是专为智能家电、服务机器人、工业机器等应用中的嵌入式AI高速图像处理而设计,业内功耗最低的octal xSPI NOR闪存器件EcoXiP将为RZ/A2M的客户们带来系统级的优势。 对于使用瑞萨MPU的系统来说,EcoXiP可实现超快速的瞬间启动和实时系统响应。它还提供高效的AI权重存储,实现低功耗的AI推理。
[汽车电子]
直接测量微处理器总线时钟的程序
用单控制环检验HC08 SCS08微处理器的总线频率。 Freescale公司的HC08和更新的HCS08微处理器系列具有通用外围模块。时钟发生器也不例外。其范围从任意I/O引脚的内部时钟到外部晶体或晶振。一旦选择了时钟源,可以有多种控制最终总线频率的选择。例如,为MC9S08GB微处理器连接一个32,768Hz的晶体,允许使用FLL(锁频环)产生最多18.874 MHz的总线频率。选择源、除数和FLL允许多功能且复杂的设置。 一旦写入总线时钟初始化程序,在继续工程其它部分之前,也许想检验总线是否以期望的速度运行。本设计方案给出在任意I/O端口以总线1/9的精确速度输出方波的程序(清单1和清单2)。仅连接一个频率计数器到
[应用]
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved