如何利用电容式数字隔离器进行设计

最新更新时间:2010-01-12来源: TI公司关键字:隔离器  电容  PCB 手机看文章 扫描二维码
随时随地手机看文章

    目前,有关电子设备使用和设计的安全规定层出不穷,使电流隔离器几乎成为所有数据采集和传输系统中的必需。避免控制系统低压电路在电场中遭受潜在的传感器和传动器组件高压损害的一种方法,就是使用数字隔离器。

    本文的目的在于告诉大家如何简化隔离系统设计,文章除描述电容式数字隔离器的基本功能,详细介绍如何在信号通路中安装隔离器外,还就如成功设计电路板提供了一些有价值的参考意见。

电容式数字隔离器的基本功能

    图1显示了一个电容式数字隔离器的简化结构图,该隔离器由一个高速信号路径和一个低速信号路径组成。高速路径(蓝色部分)传输100kbps至150Mbps的信号,而低速路径(橙色部分)则传输100kbps以下信号至dc。

图 1 电容式数字隔离器的简化结构图
图 1 电容式数字隔离器的简化结构图

    蓝色部分所示路径中处理的高速信号被电容式隔离势垒分为多个快速瞬变脉冲群。随后的触发器(FF)将这些瞬态脉冲群转换成波形和相位均与输入信号一致的脉冲。内部看门狗(WD)检查高速信号边缘的周期性。在低频输入信号情况下,连续信号边缘间的持续时间超出了看门狗窗口。这样便迫使看门狗将输出开关位置从高速路径(位置1)改变为低速路径(位置2)。

    低速路径比高速路径多出几个功能元件。因为低频输入信号要求隔离势垒禁止采用大电容,所以输入信号被用于对内部振荡器(OSC)的载波频率进行脉宽调制(PWM)。这就构成了一个非常高的频率,能够通过该电容势垒。由于输入得到了调制,因此必须在实际数据传输至输出端以前使用低通滤波器(LPF)去除其中的高频载波。

在信号链中的安装位置

    数字隔离器分为单通道、双通道、三通道及四通道器件,可以实现单向和双向运行,它们的共有特性如下:

    - 不符合任何特定接口标准;

    - 使用3V/5V逻辑开关技术

    - 专为电隔离数字、单端(SE)数据线而设计

    虽然最后一点似乎是设计上的限制,然而图2却显示了如何对多种接口进行隔离,其中包括低压 SPI、高压RS232、差分USB和差分CAN/RS485。

图 2 数字隔离器必须安装在隔离接口的单端部分中

图 2 数字隔离器必须安装在隔离接口的单端部分中

    所有接口都有一个相同点,那就是数字隔离器必须安装在隔离接口的单端3V/5V部分。

    由于数字隔离器都具有1到2ns的升降时间,因此它们在长信号走线情况下往往易出现信号反射,其特性阻抗与隔离器输出的源阻抗不匹配。因此,我们建议在其相应数据接收装置和数据源(例如:控制器、驱动器、接收器和收发器等)附近安装一个隔离器。在设计中如果无法这样做,那么就必须使用受控的阻抗传输线。

PCB 设计指南

    就数字电路板而言,要使用标准FR-4环氧玻璃作为PCB材料,这是由于相比那些廉价材料,其不但符合UL94-V0要求,而且还拥有更少的高频介电损耗、更低的吸湿性、更大的强/硬度以及更高的阻燃特性。

    要实现低电磁干扰(EMI)的PCB设计,这里推荐一个最少四层的设计实例(请参见图3),其从上到下分别为:高速信号层、接地层、电源层以及低频信号层。

图 3 推荐的四层板叠层
图 3 推荐的四层板叠层

    在顶层布置高速走线为隔离器及其相应的驱动器提供了一目了然的连接。高速走线要短,并避免使用过孔,以此保证高速走线电感最低。

    紧接着高速信号层放置一个平衡板面地线层,以确保接地层和信号走线之间存在强大的电气耦合。这样便建立起传输线互联的受控阻抗,同时也极大地减少了EMI。最终,平衡板面地线层为回流提供了一个非常好的低电感路径。

    将电源层置于接地层下面。这两个参考层构成了一个大约为100pF/in2的附加高频旁路电容器。在底层布线低速控制信号。这些信号链路拥有足够的余量来承受过孔引起的中断,从而实现了更大的灵活性。

    受控阻抗传输线是特性阻抗Z0始终受控于其几何特性的走线。走线长度大于15mm(tr=1ns)和 30mm(tr=2ns)时,走线阻抗必须要与隔离器输出阻抗Z0~rO匹配(如图4所示),使信号反射最小化。这被称为源阻抗匹配。

图 4 源阻抗匹配:Z0 ~ rO

图 4 源阻抗匹配:Z0 ~ rO

    隔离器的动态输出阻抗r0,可以通过隔离器数据手册中列出的近似电压-电流输出特性线性部分得到。一般来说,标准输出阻抗大约为70Ω。因此,对一条标准的2盎司镀铜线和电介质为4.5的FR-4而言,接地层上8mm宽、10mm长的走线几何形状会产生所需的70Ω特性阻抗。

布线指南

    建议遵循下列几条主要的布线原则,以保持信号完整性和低EMI。

    为了将串扰降至10%以下,需保持信号走线是高速信号层到接地层距离的三倍(d=3h)。信号走线下的回流密度遵循1/[1+(d/h)2]函数,因此其在d>3h点上的密度会非常低,从而避免邻近走线中出现较大的串扰(请参见图5)。

图 5 利用 d = 3h 来最小化串扰

图 5 利用 d = 3h 来最小化串扰

    使用45o走线弯曲(或者斜切式弯曲)而非90o弯曲,可保持有效的走线阻抗并避免信号反射。

    为了实现在噪声环境下的工作,将隔离器的闲置启动输入通过一个电阻器(1kΩ到10kΩ)连接到合适的参考层。将高电平有效、高位允许输入连接到电源层,同时将低电平有效输入连接至接地层。

    当过孔电感增加信号路径电感时,要避免各层随快速信号走线改变。

    在隔离器与周围电路之间使用较短的走线长度可避免噪声引入。数字隔离器通常会带有隔离式DC/DC转换器,后者提供了跨越隔离层的电源。由于隔离器的单端传输信号对噪声引入过于敏感,因此邻近DC/DC转换器的开关噪声可以很容易被长信号走线引入。

    将大容量电容(比如10μF)置于靠近电源如稳压器旁,或是在电源进入PCB的地方。

    通过将电容的电源端直接连接至器件的电源端,然后经过孔连至Vcc层,在器件上安装小容量的0.1μF或0.01μF旁路电容。经数个过孔将电容接地端连接至接地层(请参见图6)。

图 6 将旁路电容直接连接至 Vcc 终端

图 6 将旁路电容直接连接至 Vcc 终端

    将多个过孔用于连接旁路电容和其他保护器件(例如:瞬态电压抑制器和齐纳二极管),从而最小化接地连接的过孔电感。

总结

    尽管关于PCB设计的资料有很多,但本文主要提供一些涉及数字隔离器电路板设计的建议。遵循这些建议将有助于在最短的时间内完成一个符合EMC标准要求的电路板设计。

关键字:隔离器  电容  PCB 编辑:金海 引用地址:如何利用电容式数字隔离器进行设计

上一篇:能扩展微机输出端口的RC低通滤波器
下一篇:两线制4/20mA变送器的电路设计

推荐阅读最新更新时间:2023-10-12 20:16

LTC4300A系列为背板I2C总线提供电容性缓冲
  LTC4301是一个不依赖电源、能够热插拔的双线总线缓冲器,能允许I/O线路卡插入带电的背板而不需考虑对数据总线(SDA)的以及时钟线(SCL)的信号破坏。该集成电路在背板和线路板的I2C总线之间提供了隔离缓冲,无论对应的电源电压是否不同。LTC4301热插拔双线总线缓冲器的独立于电源的特点免除了对背板电源电压专用针脚的需要,不必牺牲任何程度的I2C导通量。LTC4301除了能在带电的条件下拔除或插入线路板以外,其SDA和SCL的针脚还能经受10kV的ESD,从而在任何操作条件下都能保护线路板。组件极大地简化了双线总线配合使用网络服务器、桌上计算机或通信场合中的大量线路卡,无论其电源是否不同还是其电压高低不等。   SM总线和
[电源管理]
电容式触摸感应在电磁炉中的应用研究
  1 引言   ST针对家电应用特别是电磁炉应用,推出了一个基于STM8系列8位通用微控制器平台的电容式触摸感应方案,无需增加专用触摸芯片,仅用简单的外围电路即可实现电容式触摸感应功能,方便客户二次开发。   2 方案介绍   ST的电容式触摸按键方案通过一个电阻和感应电极的电容CX构成的阻容网络的充电/放电时间来检测人体触摸所带来的电容变化。如图1所示,当人手按下时相当于感应电极上并联了一个电容CT,增加了感应电极上的电容,感应电极进行充放电的时间会增加,从而检测到按键的状态。而感应电极可以直接在PCB板上绘制成按键、滚轮或滑动条的应用样式,也可以做成弹簧件插在PCB板上,即使隔着绝缘层(玻璃、树脂)也不会对其检测性能有所
[单片机]
<font color='red'>电容</font>式触摸感应在电磁炉中的应用研究
一种廉价实用的双积分A/D转换器
   1原理   51系列单片机具有两个以上16位双通道定时器(TIME0和TIME1),每个通道可选择为输入捕获方式来测量脉宽。我们用片内16位的定时器外接运放、比较器实现双积分A/D转换。原理图如图1所示(电源和5l单片机外围电路同常规电路),TL082是JFETINPUT运放;LM358作为比较器;MC4066是多路开关。51单片机P1口的P10、P11、P12作为输出,控制MC4066多路开关的输入选择;INT0作为中断输入口,捕捉LM358比较器的输出电平跳变。C1为积分电容,常取0.22μF左右的聚丙烯电容,R2为积分电阻,可取500k左右,U2A为积分运放,U2A、C1、R2构成了积分器,U2B是过零检测运放
[模拟电子]
Cadence推出新一代PCB软件OrCAD X,AI和云双加持,效率提升5倍
新闻要点 Cadence 推出下一代 AI 驱动的 OrCAD X,PCB 设计速度提升高达 5 倍,并通过Cadence OnCloud云服务实现 生成式 AI 可自动化布局,从而将时间从几天缩短到几分钟 Cadence OnCloud 集成支持数据管理和协作,并通过易于使用的新布局画布进行增强,提高了设计人员的工作效率 与供应链数据集成以及本地可访问的分析和模拟可加快上市时间 Cadence日前宣布推出新的 Cadence OrCAD X 平台,这是一款支持云的系统设计解决方案,在易用性和性能方面提供了革命性的改进、自动化和协作。 新的 OrCAD X 平台简化了系统设计流程,并通过云可扩展性和人工智能驱动
[模拟电子]
如何用万用表判断电容器质量的好坏
根据电解电容器容量大小选用万用表的R×10、R×100、R×1K挡进行测试判断。红、黑表笔分别接电容器的负极(每次测试前,需将电容器放电),由表针的偏摆来判断电容器质量。若表针迅速向右摆起,然后慢慢向左退回原位,一般来说电容器是好的。如果表针摆起后不再回转,说明电容器已经击穿。如果表针摆起后逐渐退回到某一位置停位,则说明电容器已经漏电。如果表针摆不起来,说明电容器电解质已经干涸推失去容量。 有些漏电的电容器,用上述方法不易准确判断出好坏。当电容器的耐压值大于万用表内电池电压值时,根据电解电容器正向充电时漏电电流小,反向充电时漏电电流大的特点,可采用R×10K挡,对电容器进行反向充电,观察表针停留处是否稳定(即反向漏电电流是否恒定
[测试测量]
奋力实现技术超越—超厚铜PCB制作工艺研究
1.前言 随着汽车电子以及电源通讯技术的快速发展,4-10OZ及其以上超厚铜箔电路板逐渐成为一类具有广阔市场前景的特殊PCB板,受到越来越多的线路板制造商的关注,同时伴随着印制电路板在电子领域的应用越来越广,设备对印制板的功能要求也越来越高,我们的印制电路板将不仅要为电子元器件提供必要的电气连接以及机械支撑,同时也逐渐被赋予了更多的附加功能,而能够将电源集成、提供大电流、高可靠性的超厚铜箔印制板逐渐成为PCB行业研发的热门产品,该产品多用于军工产品。 目前行业内做的比较多的印制板的铜箔厚度通常在1OZ~3OZ之间,而对于成品铜厚达10OZ及以上的超厚铜PCB的制作报道却几乎没有,捷多邦PCB主要针对10OZ超厚铜PCB的制
[半导体设计/制造]
奋力实现技术超越—超厚铜<font color='red'>PCB</font>制作工艺研究
低钳位、低电容、低泄露,Nexperia USB4标准ESD保护器件问市
Nexperia,分立器件、MOSFET器件及模拟和逻辑器件领域的生产专家,今日宣布推出PESD2V8R1BSF,这是业内首款专门针对USB4TM标准开发的ESD保护器件,具有行业领先的RF性能。新款器件采用Nexperia的TrEOS ESD技术与有源可控硅(SCR)技术,USB4TM和Thunderbolt接口设计工程师将会特别感兴趣。该器件可实现极低电容(低至0.1 pF);极低钳位电压 动态电阻低至0.1 Ω)以及非常稳健的防浪涌与ESD性能(,最高可达20A 8/20 µs)。PESD2V8R1BSF采用超低电感SOD962封装。 Nexperia产品经理Stefan Seider评论道:“为避免信号完整性问题
[电源管理]
低钳位、低<font color='red'>电容</font>、低泄露,Nexperia USB4标准ESD保护器件问市
薄膜电容为什么会发出噪音?是什么原因?
生活处处都有噪音,人们对噪音烦不胜烦,一听到噪音心情就会变差,特别是电子设备用的好好的发现有噪音,虽然声音小,但很多人无法忍受噪音的存在。电子设备有些电子元件比如薄膜电容在使用过程中会产生噪音。 那薄膜电容为什么会产生噪音呢?先来看看薄膜电容的结构。薄膜电容以塑料薄膜作为电介质,金属箔作为电极,介质和电极相互重叠,采用卷绕方式而成,薄膜电容的结构除了卷绕方式制成之外,还用采用叠层方式将电介质和蒸气所沉积的金属薄膜层相互重叠形成。 由于在薄膜电容介质薄膜层间存在间隙,在电压下和交流电场的作用下,薄膜电容之间的薄膜介质发生弹性形变,产生弹性振动,导致薄膜共振,出现交流声,这也就是我们所说的薄膜电容出现的噪音。 智旭电子薄膜电
[嵌入式]
薄膜<font color='red'>电容</font>为什么会发出噪音?是什么原因?
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved