球形检测器在MIMO通信系统中的应用及FPGA实现

最新更新时间:2010-09-21来源: 互联网关键字:空分复用  球形检测器  MIMO系统  FPGA 手机看文章 扫描二维码
随时随地手机看文章

    空分复用 (SDM) MIMO 处理可显著提高频谱效率,进而大幅增加无线通信系统的容量。空分复用 MIMO 通信系统作为一种能够大幅提升无线系统容量和连接可靠性的手段,近来吸引了人们的广泛关注。

    MIMO 无线系统最佳硬判决检测方式是最大似然 (ML) 检测器。ML 检测因为比特误码率 (BER)性能出众,非常受欢迎。不过,直接实施的复杂性会随着天线和调制方案的增加呈指数级增强,使 ASIC 或 FPGA 仅能用于使用少数天线的低密度调制方案。

    在 MIMO 检测中,既能保持与最佳 ML 检测相媲美的 BER 性能,又能大幅降低计算复杂性的出色方法非球形检测法莫属。这种方法不仅能够降低 SDM 和空分多接入系统的检测复杂性,同时又能保持与最佳 ML 检测相媲美的 BER 性能。实现球形检测器有多种方法,每种方法又有多种不同算法,因此设计人员可以在诸如无线信道的吞吐量、BER 以及实施复杂性等多项性能指标之间寻求最佳平衡。

    虽然算法(比如 K-best 或者深度优先搜索)和硬件架构对 MIMO 检测器的最终 BER 性显而易见有极大的影响,不过一般在球形检测之前进行的信道矩阵预处理也会对 MIMO 检测器的最终 BER 性能产生巨大影响。信道矩阵预处理可繁可简,比如根据对信道矩阵进行的方差计算结果 (variance computaTIon),计算出处理空分复用数据流的优先次序,也可以使用非常复杂的矩阵因子分解方法来确定更为理想(以 BER 衡量)的数据流处理优先次序。

    Signum Concepts 是一家总部位于圣地亚哥的通信系统开发公司,一直与赛灵思和莱斯大学(Rice University)开展通力合作,运用 FPGA 设计出了用于 802.16e 宽带无线系统的空分复用MIMO 的MIMO 检测器。该处理器采用信道矩阵预处理器,实现了类似贝尔实验室分层空时 (BLAST)结构上采用的连续干扰抵消处理技术,最终达到了接近最大似然性能。

系统考虑因素

    理想情况下,检测过程要求对所有可能的符号向量组合进行 ML 解决方案计算。球形检测器旨在通过使用简单的算术运算降低计算复杂性,同时还能够保持最终结果的数值完整性。我们的方法,第一步是把复杂的数值信道矩阵分解为只有实数的表达式。这个运算增加了矩阵维数,但简化了处理矩阵元的计算。降低计算复杂性的第二个方面体现在,减少检测方案分析和处理的可选符号。其中,对信道矩阵进行 QR 分解是至关重要的一步。

    图 1 显示的是如何进行数学转换,得出计算部分欧几里德距离度量法的最终表达式。欧几里德距离度量法是球形检测过程的基础。R代表三角形矩阵,用于处理以矩阵元 rM,M 开始的可选符号的迭代法。其中,M代表信道矩阵以实数表达的维数。该解决方案通过 M 次迭代定义出遍历树结构,树的每层i对应第i根天线的处理符号。

图 1. 用于球形检测器 MIMO 检测的部分欧几里德距离度量方程

    球形检测器处理天线的次序对 BER 性能有着极大的影响。因此,在进行球形检测前,我们的设计采用了类似于 V-BLAST 技术的信道重新排序技术。

    实现树的遍历有几种可选方法。在我们的实施方案中,则使用了广度优先搜索法,这是因为该方法采用备受欢迎的前馈结构,因此具有硬件友好特征。在每一层,该实施方案只选择K 个距离最小的幸存节点来计算扩展情况。

    球形检测器处理天线的次序对 BER 性能有着极大的影响。因此,在进行球形检测前,我们的设计采用了类似于 V-BLAST 技术的信道重新排序技术。

    该方法通过多次迭代,计算出信道矩阵的伪逆矩阵的行范数,然后确定信道矩阵最佳列检测次序。根据迭代次数,该方法可以选择出范数最大或者最小的行。欧几里德范数最小的逆矩阵行表示天线的影响最强,而欧几里德范数最大的行则表示天线的影响最弱。这种新颖的方法首先处理最弱的数据流,随后依次迭代处理功率从高到低的数据流。

FPGA 硬件应用

    为实现上述系统,我们采用了赛灵思 Virtex®-5 FPGA 技术。该设计流程采用赛灵思 System Generator 进行设计捕获、仿真和验证。为了支持各种不同数量的天线/用户和调制次序,我们将检测器设计用于要求最高的 4x4、64-QAM 情况下。

    我们的模型假定接收方非常清楚信道矩阵,这可以通过传统的信道估算方法来实现。在信道重新排序和 QR 分解之后,我们开始使用球形检测器。为准备使用软输入、软输出信道解码器(比如 turbo 解码器),我们通过计算检测到的比特的对数似然比 (LLR) 来生成软输出。

    该系统的主要架构元素包括数据副载波处理和系统子模块管理功能,以便实时处理所需数量的子载波,同时最大程度地降低处理时延。对每个数据副载波都进行了信道矩阵估算,限定了每个信道矩阵可用的处理时间。对选中的 FPGA 而言,其目标时钟频率为 225MHz,通信带宽为 5MHz(相当于 WiMAX 系统中的 360 个数据子载波),每个信道矩阵间隔可用的处理时钟周期数为 64。

    我们采用硬件功能单元精湛的流水线和时分复用 (TDM) 功能,以达到 WiMAX OFDM 符号的实时要求。

    除了高数据率外,在架构设计指导过程中控制子模块时延也是一个重要的问题。我们通过引入连续信道矩阵的 TDM 解决了时延问题。这种方法可以延长同一信道矩阵元之间的处理时间,同时还能保持较高的数据吞吐量。构成 TDM 组的信道数会随着子模块的不同而变化。在 TDM 方案中,信道矩阵求逆过程用了 5 个信道,而有 15 个信道在实数 QR 分解模块中进行了时分复用。图 2 是该系统的高级流程图。

图 2. MIMO 802.16e 宽带无线接收器的高级流程图

信道矩阵预处理

    信道矩阵预处理器确定了空分复用复合信号每一层的最佳检测次序。该预处理器负责计算信道矩阵的伪逆矩阵范数,并根据这些范数,选择待处理的下一个传输流。伪逆矩阵中范数最小的行对应着最强传输流(检波后噪声放大最小),而范数最大的行对应着质量最差的层(检波后噪声放大最大)。我们的实施方案首先检测最弱的层,然后按最低噪声放大到最高噪声放大的次序逐层检测。对排序过程中的每一步,信道矩阵中相应的列随后会被清空,然后简化后的矩阵进入下一级的天线排序处理流水线。

    在预处理算法中,伪逆矩阵的计算要求最高。这个过程的核心是矩阵求逆,通常通过吉文斯(Givens) 旋转进行 QR 分解 (QRD) 来实现。常用的角度估算和平面旋转算法(如 CORDIC)会造成严重的系统时延,对我们的系统来说是不可接受的。因此,我们的目标是运用 FPGA 的嵌入式 DSP 资源(比如 Virtex-5 器件中的 DSP48E),找出矢量旋转和相位估算的替代性解决方案。

关键字:空分复用  球形检测器  MIMO系统  FPGA 编辑:金海 引用地址:球形检测器在MIMO通信系统中的应用及FPGA实现

上一篇:使用USB进行测试和测量的优势
下一篇:混合集成电路的电磁兼容(EMC)设计

推荐阅读最新更新时间:2023-10-12 20:17

基于ARM和FPGA的靶场破片测速系统的设计
破片速度是战斗部爆炸效能*估的一个重要参数。传统的靶场破片测速系统多使用多路数据采集卡设置好的参数现场采集标靶的试验波形,试验完成后再交由计算机进行后期处理和解读以获取破片速度等参数。但随着军事科技的日新月异,靶场破片测速系统需要根据实际情况现场设置的参数越来越多,参数设置的灵活性越来越强,对系统工作的实时性要求越来越高;另一方面,战斗部爆炸试验在野外进行,条件恶劣,大型设备携带不便,以往的PC机+数据采集卡设计已经越来越不能满足靶场试验的要求。嵌入式系统具有功耗小、便携性好、稳定性高、实时性强的特点,近年来随着嵌入式技术的不断发展,把嵌入式技术引入靶场破片测速系统设计中,为靶场破片测速系统设计提供了一个新的思路。
[嵌入式]
基于ARM和<font color='red'>FPGA</font>的靶场破片测速<font color='red'>系统</font>的设计
莱迪思全新CrossLinkPlus FPGA问市,内含片上闪存,超快启动
如今,嵌入式视觉系统设计师需要迎合众多市场趋势。例如,现在的设计使用的传感器越来越多,便于收集更多数据或实现新的功能。比如在汽车市场,几十年前,汽车厂商在车辆上安装一个备份摄像头就算是创新之举了,而现在他们已经开始将摄像头用于道路偏离监控、速度标志牌识别和其他众多智能驾驶应用。 同时,嵌入式视觉系统设计师正逐渐采用符合移动产业处理器接口(MIPI)联盟标准的组件。MIPI起初是为移动市场开发的,它定义了移动设备的设计人员在在构建高性能、高成本效益、可靠的移动解决方案时所需的硬件和软件接口标准。在过去几年中MIPI已经成为开发嵌入式系统的主流标准。包括工业和汽车等领域的各类应用的设计人员都已经意识到这一点,并且开始寻找方法来利用
[嵌入式]
莱迪思全新CrossLinkPlus <font color='red'>FPGA</font>问市,内含片上闪存,超快启动
基于FPGA的车道偏离预警系统的设计
摘要: 介绍了一种以FPGA芯片为核心,基于数字图像处理技术和SOPC技术的车道偏离预警系统实现方案。系统通过CCD摄像头完成车辆前方图像的采集,利用Hough变换实现车道检测,利用边缘检测函数完成偏离预警的功能。系统具有良好的便携性、灵活性和通用性。详细的论述了该系统硬件结构和软件设计思想,并分析了系统具有的优点。 关键词: 车道偏离;车道检测;Hough变换;SoPC;FPGA; 0 引言 随着我国国民经济的发展,汽车拥有量剧增,同时公路建设事业的迅速发展,造成目前公路交通呈现行驶高速化、车流密集化和驾驶员非职业化的趋势,由汽车碰撞引起的交通事故危害着人民的生命财产安全。根据美国国家公路交通安全管理局(NHTS
[嵌入式]
基于<font color='red'>FPGA</font>的车道偏离预警<font color='red'>系统</font>的设计
开放、标准、免费 赛灵思发布Vitis统一软件平台
FPGA以及采用它们的片上系统架构具有可配置、适应性强的特性,使得该技术在从AI驱动的数据中心到智能边缘设备和IoT的众多应用中都是关键。作为其不断发展过程中的一部分,赛灵思一直在将这种自适应技术集成到用于机器学习的平台加速器解决方案,以及结合了各种计算资源的特定架构解决方案。 但是,当今异构计算架构的问题之一是,普通软件开发人员很难使用它们。 开发人员必须具有大量的硬件专业知识,才能了解如何最有效地利用系统中从CPU到GPU和FPGA的各种计算资源。 好消息是,近日赛灵思发布了一款名为Vitis的新的免费统一软件平台。 该公司希望可以让包括软件工程师和 AI 科学家在内的广大开发者都能受益于硬件灵活应变的优势。 Vi
[嵌入式]
开放、标准、免费 赛灵思发布Vitis统一软件平台
基于SmartModule的雷达嵌人式计算机设计
      1 引言   在传统的舰载雷达计算机系统中,一般采用双机(A,B机)体制:A机负责数据的采集、跟踪、解算,称为任务计算机;B机负责雷达综合态势与相关数据的显示与操控,同时完成对各种接口的操作,称为人机接口计算机。A,B机之间通过共享存储区交换数据。在这种系统中,双机都采用军用加固机,A机与雷达接口板、天线方位接口板等相连,而B机需要控制操作多种接口板卡,如显示接口板、对外接口板、数据存储板、网络接口板等。同时系统中还存在各种用于控制雷达分机的小系统,如伺服系统;提供舰艇经纬度信息的GPS系统,这些小系统与B机之间通过串口进行通信。可见,传统计算机系统组成板卡多、各板卡功能单一、系统组成结构复杂、可靠性差、且数据交换
[嵌入式]
提升整合度/弹性 FPGA抢进手机电源管理
由于功能型手机与智能型手机的功能越来越多,对电源管理芯片的要求也越来越高,过去基于成本的考虑,现场可编程门阵列(FPGA)应用于手机电源管理的机会较小,然而随着FPGA技术不断的演进,挟其高整合度与设计弹性,再加上续降的成本优势,目前FPGA已成功进驻手机电源管理市场。 莱迪思产品营销经理Shyam Chandra表示,多功能手机对于电源管理IC带来的挑战还包括电源序列经常须改变在电路板的调试,以确保可靠启动等。 专注于电源管理IC市场开拓的莱迪思(Lattice)产品营销经理Shyam Chandra表示,手机的功能持续增加,电源管理IC除了须提升效能外,也须提高整合度,以进一步降低成本。此外,多
[嵌入式]
老兵新传:Xilinx新CEO谈未来战略
2008年元月7日,Xilinx公司宣布原Cadence公司执行副总裁兼验证事业部总经理MosheGavrielov担任公司新CEO,Xilinx原CEOWillem(Wim)P.Roelandts担任公司董事局主席! 对于有24年历史的Xilinx来说,有近30年半导体业界管理和软件经验的MosheGavrielov会这家公司带来什么新的变化?元月8日,上任第2天,MosheGavrielov透露了Xilinx的未来战略。 MosheGavrielov:FPGA未来前景一片光明 “要成功开发FPGA产品,必须具备两个要素,一个是有可用的高级硬件资源,一个是可用的IP,但是我认为更重要的是要
[嵌入式]
基于TMS320C6711的中心定位实时图象处理系统
地平仪是卫星姿态控制系统的关键子系统,其测量精度和可靠性直接关系到卫星姿态是否精确和稳定,在凝视或静态型地平仪中,地球被成像在红外面阵探测器上,因此地球图像的边缘可落在红外面阵探测器的光敏面内。对该图像进行中心定位处理,可提取出卫星的姿态参数,通过调整卫星滚动轴和俯仰轴方向,使固定在卫星上的红外面阵探测器视场中心正好对准地球中心,从而精确定位整个卫星系统的姿态,由于地平圈图像具有远多于通过圆锥扫描方式获得的信息,因而可获得更高的精度,本文利用TI公司的DSP芯片TMS320C6711B(简称C6711)实现了中心定位的相关算法。实践证明,该方法不仅可以满足实时性要求,还可以提高地平仪的测量精度,对提高卫星姿态的精度具有重要意义。
[应用]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved