利用电阻网络调整差分放大器的固定增益

最新更新时间:2010-10-20来源: MAXIM关键字:电阻网络  差分放大器  高通滤波器  截止频率 手机看文章 扫描二维码
随时随地手机看文章

    通过增加一个外部电阻网络,可以降低差分放大器(如MAX9705)的固定增益,获得所要求增益,但必须考虑电阻网络对内部阻抗的影响。本应用笔记讨论了估算这一影响的计算公式以及如何选择电阻网络的阻值,并给出一个计算表格的链接。


    如果差分放大器的固定增益不能理想地满足实际应用的需求,可以增加外部电阻网络衰减增益。此类调整电路与电阻分压网络类似,但最大的不同在于:对于固定增益放大器来说,内部输入阻抗会影响外部电阻网络(图1)。对于差分输入结构,可以简化电路,利用一半的等效电路进行分析(图2)。

 MAX9705固定增益音频放大器配置为差分信号输入架构 www.elecfans.com
图1. MAX9705固定增益音频放大器配置为差分信号输入架构(A)或单端信号输入架构(B)

 

差分配置图1A的等效电路(一半),简化分析 www.elecfans.com


图2. 差分配置图1A的等效电路(一半),简化分析。

    以下是差分结构(图1A)的电压增益计算公式:

式1.

式中,GAIN为放大器固定电压增益,以dB为单位(MAX9705音频差分放大器提供6dB、12dB、15.6dB和20dB增益型号,输入阻抗典型值为20kΩ)。

    单端配置下,增益计算公式为:

式2.

     上述公式假定输入信号频率远远高于CIN和输入等效阻抗所构成的高通滤波器的截止频率。

    MAX9705放大器的固定增益误差典型值在5%以内;内部输入阻抗的相对误差可达±40%,计算系统增益时必须考虑这一因素的影响。外部电阻也必须按照最大误差(即±容差的极端值)代入公式计算增益,得到最差条件下增益:
 

Worst-Case Tolerance Calculation
Lowest Gain Single-Ended Differential Highest Gain Single-Ended Differential
R1a +Tolerance +Tolerance R1a -Tolerance -Tolerance
R1b +Tolerance +Tolerance R1b -Tolerance -Tolerance
R2 -Tolerance -Tolerance R2 +Tolerance +Tolerance
Ri1 -Tolerance -Tolerance Ri1 +Tolerance +Tolerance
Ri2 +Tolerance -Tolerance Ri2 -Tolerance +Tolerance


    为了降低误差,选择相对于Ri而言具有较小阻值的R1。确保考虑输入源VIN能够驱动等效负载网络。计算最终的系统增益时,注意VIN的输出阻抗与衰减电路的输入阻抗构成了分压网络。负载(RIN)由下式计算。

    对于差分结构,RIN = R1 + Ri/(R2/2)。RIN和CIN构成高通滤波器,其截止频率F-3dB为:F-3dB = 1/(2 × π × RIN × CIN)。

     对于单端结构,RIN = R1 + Ri/(R2 + R1/Ri)。衰减网络的输入阻抗(ZIN)为:

式3.

其中f为输入信号的频率。

    对于单端结构,不能直接求出高通滤波器的截止频率,为了得到F-3dB必须事先知道电阻值。然后,利用公式f = F-3dB得到:ZIN(f) = √2 × ZIN(f = 5000)。

    数据表格对于确定合适的电阻阻值和评估系统误差非常有用,考虑到电阻值的离散性,须确保电阻匹配,可下载表格计算MAX9705在单端或差分配置下的增益和误差。

关键字:电阻网络  差分放大器  高通滤波器  截止频率 编辑:金海 引用地址:利用电阻网络调整差分放大器的固定增益

上一篇:Maxim推出用于HSPA和LTE等高数据速率无线协议的LNA
下一篇:基于Protel 99 se的负反馈放大电路分析

推荐阅读最新更新时间:2023-10-12 20:17

Vishay 推出新款OSOP系列SMD双路直排式薄膜网络电阻
电子网消息,Vishay 日前宣布,推出新的符合JEDEC MO-137 variation AB和AE的16pin和24pin版本,扩充其采用25mil引脚间距QSOP封装的OSOP系列表面贴装双路直排式薄膜网络电阻。Vishay Dale薄膜网络电阻提供隔离式,共用末位pin脚和定制的电路,电阻相对公差为±0.025%,相对TCR低至±5ppm/℃,可实现比竞争器件更高的精度。 今天发布的网络电阻适用于精密分压器和运算放大器,最大带底座高度为1.73mm,引脚间距为25mil,比目前标准间距器件所需的电路板空间少50%。典型应用包括电信、工业、过程控制和医疗器械。 在隔离式电路中,16pin和24pin的电阻网络分别有
[半导体设计/制造]
可用于电流检测监控的单电源差分放大器AD8210
AD8210是一款单电源差分放大器,非常适合放大大共模电压中的微弱差分电压。它的输入共模电压范围是-2 V 至 +65 V,电源电压典型值为5 V。 AD8210采用SOIC封装,工作温度范围是−40°C至+125°C。 AD8210在整个温度范围内具有出色的交流和直流性能,使得测量环路中的误差最小。其最大失调漂移与增益漂移分别为8 µV/°C与20 ppm/°C。 采用5V电源供电时,通过V REF 1和V REF 2引脚的设置,AD8210的输出失调可以在0.05 V 至 4.9 V的范围内进行调整。将VREF1与V+连接、V REF 2与GND连接时, 输出可被设置为满量程的一半。将V REF 1和V RE
[模拟电子]
可用于电流检测监控的单电源<font color='red'>差分放大器</font>AD8210
截止频率连续可变的有源滤波器
截止频率连续可变的有源滤波器
[模拟电子]
<font color='red'>截止频率</font>连续可变的有源滤波器
T型电阻网络型D/A转换器
T型电阻网络型D/A转换器 D/A转换器的原理: 把输入数字量中每位都按其权值分别转换成模拟量,并通 过运算放大器求和相加。根据克希荷夫定律,如下关系成立: I0=20 I1=21 I2=22 I3=23 注:因使用反相比例放大器来实现电流到电压的转换,所以输出模拟信号(VO)的极性与参考电压(VREF)极性相反。
[模拟电子]
T型<font color='red'>电阻</font><font color='red'>网络</font>型D/A转换器
低固定增益差分放大器的噪声测量
由随机小电压构成的噪声可能很难测量,实验室仪器本身的噪声使测量问题进一步复杂化。测量噪声时,常常要使用专门的技 术。例如,放大器通常配置为高闭环增益,以使放大输入噪声便于测量。但是,低固定增益差分放大器的噪声测量面临着更大的问题,它集成反馈和增益电阻,不方 便使用高增益配置。此外,为了与频谱分析仪接口,需要进行差分单端转换。第二级放大器可以提供增益并执行差分单端转换,巧妙地解决上述两个问题。 图1显示可选增益(1、2或3)差分放大器 ADA4950-1 后接低噪声、低失真运算放大器 AD8099 。 AD8099将差分输出转换为单端信号,增益设为10。与ADA4950-1相比,AD8099的1nV/ Hz等效输入电压噪声可忽略不
[测试测量]
低固定增益<font color='red'>差分放大器</font>的噪声测量
面向运算放大器应用的电阻网络
  某些理想的运算放大器配置假定反馈电阻器呈现完美的匹配。而实际上,电阻器的非理想性会对各种电路参数产生影响,例如:共模抑制比(CMRR)、谐波失真和稳定性。如图1例子所示,配置一个单端放大器以将接地参考信号电平移位至2.5V共模电压就需要一个上佳的CMRR。假设CMRR为34dB且没有输入信号,则该2.5V电平移位器将产生一个50mV的输出偏移,其甚至有可能压倒12位ADC和驱动器的LSB和偏移误差。      图1:用作电平移位器的单端运放   对于运放而言,34dB是一个不太理想的CMRR。然而,不管该运放的性能如何,一个由1%容差电阻器构成的反馈网络会将CMRR限制在34dB。高度匹配的电阻器 (比如 LT54
[电源管理]
面向运算放大器应用的<font color='red'>电阻</font>器<font color='red'>网络</font>
LTC6605-10-具低噪声、低失真差分放大器的双通道、匹
LTC6605 描述 LTC®6605-10 包含两个独立的全差分放大器,被配置成匹配的二阶 10MHz 低通滤波器。滤波器的 f-3dB 在 9.7MHz 至 14MHz 范围是可调的。 内部放大器是全差分型的,具有非常低的噪声和失真,而且与 16 位动态范围系统相兼容。输入能够接受单端或差分信号。为每个放大器提供了一个输入引脚,用于设定差分输出的共模电平。 经过激光修整的内部电阻器和电容器负责确定一个精准、高度匹配的 (在增益和相位上) 10MHz 二阶滤波器响应。用于每个通道的单个可任选外部电阻器能够修整每个放大器的频率响应。 三态 BIAS 引脚用于确定每个放大器的功耗,从而允许在停机、中等功率或满功率
[模拟电子]
LTC6605-10-具低噪声、低失真<font color='red'>差分放大器</font>的双通道、匹
ADI推出最新高速差分放大器驱动高速ADC
Analog Devices, Inc最新推出一款高速差分放大器——ADA4927,为工程师提供了高性能、低噪声和低功耗的业界最佳组合,适合于驱动功耗敏感的通信和仪器仪表系统中的高增益模数转换器(ADC)。ADA4927差分放大器所消耗的电流比其它同类器件小一半,增益为10时的无杂散动态范围(SFDR)大于80 dB,比其它ADC驱动器高出6 dB。即使在这样的高增益下,ADA4927的电流反馈架构允许它在从直流到大于100 MHz的输入带宽范围内保持性能,而其它ADC驱动器的性能在频率超过70 MHz时会迅速下降。 ADA4927可以使用单端-差分和差分-差分配置,并专为驱动目
[模拟电子]
ADI推出最新高速<font color='red'>差分放大器</font>驱动高速ADC
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved