LTC6605-10-具低噪声、低失真差分放大器的双通道、匹

最新更新时间:2013-11-12来源: 互联网关键字:LTC6605-10  低失真  差分放大器 手机看文章 扫描二维码
随时随地手机看文章

LTC6605描述

LTC®6605-10 包含两个独立的全差分放大器,被配置成匹配的二阶 10MHz 低通滤波器。滤波器的 f-3dB 在 9.7MHz 至 14MHz 范围是可调的。  

内部放大器是全差分型的,具有非常低的噪声和失真,而且与 16 位动态范围系统相兼容。输入能够接受单端或差分信号。为每个放大器提供了一个输入引脚,用于设定差分输出的共模电平。  

经过激光修整的内部电阻器和电容器负责确定一个精准、高度匹配的 (在增益和相位上) 10MHz 二阶滤波器响应。用于每个通道的单个可任选外部电阻器能够修整每个放大器的频率响应。  

三态 BIAS 引脚用于确定每个放大器的功耗,从而允许在停机、中等功率或满功率之间进行选择。  

LTC6605-10 采用紧凑型 6mm x 3mm 22 引脚无引线 DFN 封装,并可在 -40℃ 至85℃ 的温度范围内运作。 

LTC6605特点


两个具有差分放大器的匹配、10MHz 二阶低通滤波器 
    增益匹配:±0.35dB (最大值),通带 
    相位匹配:±1.2° (最大值),通带 
    单端或差分输入  
通带中的失真 <-90dBc  
2.1nV/√Hz 运算放大器噪声密度  
可通过引脚来选择增益 (0dB/12dB/14dB)  
可通过引脚来选择功耗 (0.35mA/16.2mA/33.1mA)  
轨至轨输出摆幅 
    可调输出共模电压控制 
    缓冲、低阻抗输出  
2.7V 至 5.25V 电源电压范围  
小外形 22 引脚 6mm x 3mm x 0.75mm DFN 封装  
Typical Application



LTC6605封装 
DFN-22



LTC6605应用


宽带无线 ADC 驱动器/滤波器  
抗混叠滤波器  
单端至差分转换  
DAC 平滑滤波器  
零 IF 直接转换接收器 

关键字:LTC6605-10  低失真  差分放大器 编辑:神话 引用地址:LTC6605-10-具低噪声、低失真差分放大器的双通道、匹

上一篇:OTL胆机放大器制作电路原理图
下一篇:LTC6247-180MHz、1mA、低功率、高效、轨至轨输

推荐阅读最新更新时间:2023-10-12 20:52

利用电阻网络调整差分放大器的固定增益
通过增加一个外部电阻网络,可以降低差分放大器(如MAX9705)的固定增益,获得所要求增益,但必须考虑电阻网络对内部阻抗的影响。本应用笔记讨论了估算这一影响的计算公式以及如何选择电阻网络的阻值,并给出一个计算表格的链接。 如果 差分 放大器的固定增益不能理想地满足实际应用的需求,可以增加外部电阻网络衰减增益。此类调整电路与电阻分压网络类似,但最大的不同在于:对于固定增益放大器来说,内部输入阻抗会影响外部电阻网络(图1)。对于差分输入结构,可以简化电路,利用一半的等效电路进行分析(图2)。 图1. MAX9705固定增益音频放大器配置为差分信号输入架构(A)或单端信号输入架构(B) 图2. 差
[模拟电子]
LT1468低噪声低失真运算放大器及其应用
    LT1468是Analogue Linear Technology公司新设计的单个可折叠式共射型运算放大器。利用LT1468可以克服其它类型放大器带宽窄、转换速率低和建立时间等缺陷。LT1468运算放大器可应用于16位系统,且能有效抑制滤波器和仪器本身精度所带来的失真。 1 LT1456简介 1.1 特点     LT1468是一个可用于16位系统的单个运算放大器,其精度和速度均已实现了最优化设计。LT1468的工作电压为15V,最大输入失调电压为±75μV,反相端的最大偏置电流为10nA,同相端为40nA,最小直流增益为1V/μV,其主要技术参数如表1所列。 表1 LT1468主要技术参数
[应用]
ADC驱动器或差分放大器设计指南
作为应用工程师,我们经常遇到各种有关差分输入型高速模数转换器(ADC)的 驱动 问题。事实上,选择正确的ADC 驱动 器和配置极具挑战性。为了使鲁棒性ADC 电路 设计多少容易些,我们汇编了一套通用“路障”及解决方案。本文假设实际驱动ADC的 电路 ——也被称为ADC驱动器或差分放大器——能够处理高速信号。 引言 大多数现代高性能ADC使用差分输入抑制共模噪声和干扰。由于采用了平衡的信号处理方式,这种方法能将动态范围提高2倍,进而改善系统总体性能。虽然差分输入型ADC也能接受单端输入信号,但只有在输入差分信号时才能获得最佳ADC性能。ADC驱动器专门设计用于提供这种差分信号的电路——可以完成许多重要的功能,包括幅度调整
[模拟电子]
基于单片机的串联锂离子电池组监测系统设计
介绍一个以51系列单片机为主控单元的串联锂离子电池组监测系统。采用差分放大器和模拟开关轮流检测单体电池电压,利用单片机的IO接口和DS18B20实现单总线多点温度检测。系统简单经济,经过试验,能可靠、准确地对串联锂离子电池组进行监测。 具有高电压、高容量、循环寿命长、安全性能好等优点的锂离子电池,在便携式电子设备、电动汽车、空间技术、国防工业等多方面具有广阔的应用前景。由若干节锂离子电池经串联组成的动力锂离子电池组目前应用最为广泛。由于每节单体电池的电压不一致,使用中电池不允许过充电、过放电,电池的性能和寿命受温度影响较大等特点,必须对串联锂离子电池组进行监测,确保在使用中锂离子电池具有良好的状态,或者使用中电池出现问题立即报
[电源管理]
基于单片机的串联锂离子电池组监测系统设计
MAX9633低噪声,低失真运算放大器
在MAX9633是一款低噪声,低失真运算放大器,优化驱动从DC应用中使用到数MHz的ADC。在MAX9633具有低噪声(3nV/√Hz的在1kHz和3.5nV/在100Hz)和低失真(130dB的10kHz时),使其适用于工业,医疗和测试应用。 异常快速的建立时间和低输入失调电压,使一个优秀的解决方案的IC驱动高解析度12位至18位SAR ADC的。该IC工作在宽电源电压范围每个放大器的静态电流只有三点五毫安高达36V。该集成电路采用8引脚,3mm x 3mm TDFN封装操作封装在-40° C至+125 ° C温度范围。 关键特性 低噪声(3nV/1kHz时)和低失真(130dB的在10kHz)ADC驱动器 建立时间非常快
[模拟电子]
高增益仪器用差分放大器电路
该电路包括输入保护,电缆自举和偏流补偿。差放宽带被C1减小,C1还使共模抑制较少地依赖输入放大器的匹配。如图所示为高增益仪器用 差分放大器 电路图:
[模拟电子]
高增益仪器用<font color='red'>差分放大器</font>电路
低失真受控振荡器电路原理分析
本文介绍如何用一种低成本的方法,来构造一个失真很少、由总线控制的正弦波振荡器。   该电路产生一个正弦输出,其典型的二次和三次谐波在10Hz到10kHz的全输出范围内,分别比基频信号低-76.1dB和-74.2 dB。这个正弦波振荡器的性能比利用二极管整形技术将方波转换为正弦波的普通二极管整形正弦发生器的性能高40dB。通常情况下,二极管整形正弦发生器的二次或三次谐波分别比基频低-35dB和-25.5dB。   这个电路由四部分组成(如图所示)。设计的核心,也即第一部分是振荡器,包括双重滤波构建块IC(U1)、二阶时钟滤波器(其带通滤波器部分设置振荡器的频率)以及比较器(U2A)。带通滤波器通过仅允许振荡器中心频率附近的信
[电源管理]
<font color='red'>低失真</font>受控振荡器电路原理分析
低失真有源混频器AD831的工作原理及应用
    摘要: AD831是美国AD公司生产的单片低失真混频器,它采用双差分模拟乘法器混频电路。文中介绍了AD831的工作原理、内部电路、引脚排列及功能说明,最后给出了AD831在频踪式雷达本振中的应用电路。     关键词: 混频器 射频 本振 中频 AD831 混频器在广播、通信、电视等外差式设备及频率合成设备中具有广泛的应用,它是用来进行信号频率变换并可保持调制性质不变的电路组件,其性能对整个系统有着足轻得的作用。AD831是AD公司生产的低失真、宽动态范围的单片有源混频器,它输入输出方式多样,使用灵活方便。 1 AD831的组成及主要特点 AD831由混频器、限幅放大器、低噪声输出放大器和偏
[半导体设计/制造]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved