基于DAC5687的高速多通道信号模拟器设计

最新更新时间:2011-01-23来源: 微处理机关键字:数模转换  高速多通道信号模拟器  大规模可编程逻辑 手机看文章 扫描二维码
随时随地手机看文章

1 引 言

    DAC5687是美国TI公司出品的一款双通道、16bit高速数模转换芯片。片内资源丰富, 具有内插、调制等多种功能。FPGA 因其属于大规模在系统可编程专用集成电路而且具有高密度、高速度、高可靠性等特点, 因此FPGA 应用于高速多通道雷达信号模拟器可大大提高系统设计的灵活性和系统的扩展性。

    本文设计的高速多通道信号模拟器系统可广泛应用于通信、雷达信号的模拟产生, 为雷达设备, 特别是接收机设备检修提供参考信号, 分离设备故障问题, 简化设备检修过程。另外, 此高速多通道信号模拟器系统基于CPC I总线, 具用很好的工程稳定性和通用性。

2 系统概述

2. 1 系统组成

    高速多通道信号模拟器采用通用CPC I底板与功能背板相结合的设计思路, 其组成如图1所示。

    高速多通道信号模拟器

 高速多通道信号模拟器
图1 高速多通道信号模拟器

    采用上图所示设计方法, 系统可扩展性强, 不同应用场合只需更换不同的功能背板即可。

2. 2 系统功能

    对本文所设计的高速多通道雷达信号模拟器,由FPGA 控制时钟管理模块, 为四路DAC5687背板提供相参工作时钟。同时, 利用X ilinx FPGA 提供的DDS核( IP core)产生信号的样点数据, 通过高速接插件将信号样点数据传输到DAC5687背板, 在背板上实现数模转换和信号输出功能。

3 DAC5687功能背板电路设计

    根据DAC5687的工作手册, 结合图1中的功能设计, 由FPGA 产生的A、B 两路信号数据分别通过两路16bit数据总线传输到DAC5687, LVPECL时钟信号可以选择与CLK1 /CLK1C 或者CLK2 /CLK2C相连接, 具体由DAC5687的时钟工作模式决定。当DAC5687工作在内部时钟模式下, 与CLK1 /CLK1C连接; 工作在外部时钟模式下, 与CLK2 /CLK2C 连接。另外, NB4N855S是一款电平转换芯片 , 能将任何电平的信号转换成为LVDS信号, 本设计中利用这款芯片将DAC5687内部锁相环PLL 产生的时钟单端信号转换成为LVDS 信号, 通过高速接插件传回通用底板, 作为外部时钟工作模式下的数据产生同步时钟。

4 单端高速数据传输线的布线及匹配问题

4. 1 单端高速数据线的阻抗计算模型

    因为DAC5687芯片的两路16bit数据总线接口都是单端的, 即每bit都只对应一根单端传输信号线, 并非是通常高速数据传输所使用的LVDS、LVPECL等差分传输信号线, 所以在印制电路板( PCB )设计时, 就必须考虑高速数据传输情况下的单端数据线布线及终端匹配问题。本设计采用微带线阻抗计算模型和表层走线规则, 以FR4印制板为例进行分析。表层走线应采用微带线模型, 如图2所示。

微带线阻抗计算模型
微带线阻抗计算模型
图2 微带线阻抗计算模型。

    当1. 0< 2. 0, 1< εr < 15时, 采用如下公式计算:< P>

    阻抗( Ω) :


    传输延时(p s /in ):



其中, h 是对地高度, w 是走线宽度, t是走线厚度, 单位都是in,  r 是基板相对介电常数。

    例如, 当设计单根传输线阻抗为50Ω, 印制板为FR4, 其介电常数εr = 4. 3, 假设对地高度h =0. 0046in, 走线厚度t= 0. 00137 in (相当于铜层总量1oz )。由( 1)可以计算得到印制电路板走线宽度为0. 008in, 即8m il。

4. 2 DAC5687高速数据线的终端匹配

    因为DAC5687的最高转换速率是500MSPS, 采用奇偶工作模式, 其最高数据输入的速率为250MSPS, 所以在印制电路板设计上应将单端高速数据线末端上升时间控制在< 2ns的范围内。计算模型 如图3所示。

图3
图3

     左边部分, 即驱动部分, 由驱动门电路、传输线和端接电阻组成。对于印制板走线, 当连线长度小于上升沿有效长度的1 /6时, 该电路表现为集总系统特征。以FR4板材为例, 由( 2)可计算得到表层走线的上升沿有效长度约为14. 286in。所以, 只要表层走线长度小于2. 38 in 即可采用集总系统模型进行电路布线。但当印制电路板走线的长度大于上升沿的长度的1 /6时, 集总系统模型失效, 应采用分布系统模型讨论。根据传输线理论, 传输线模型的完全响应为:



其中,H x (w )是传输线(即单端高速数据线)的传播因数, 当信号频率小于1GH z时, 忽略传输线电导的影响:



其中X 是传输线长度( in), R 是传输线的串连电阻( Ω / in), L 是传输线的串连电感(H / in), C 是传输线的并联电容( F / in)。

     A (w )是输入接收函数, 由源端阻抗(即驱动门电路的内阻)Zs (w )和传输线阻抗Z0 (w )共同决定:


    R2 (w )是末端反射函数, R1 (w )是源端反射函数, 分别由( 6) , ( 7)表示:


其中ZL (w ) = R1 jwC 根据电路实际参数, 使用Ma thCAD进行脉冲上升时间的仿真, 其中源端阻抗(即驱动门电路的内阻) Zs = 30Ω , Z0 = 50Ω??, C =5pF, 印制板传输线长度X = 4in, 传输线并联电容约为CT = X·C = 12pF, 传输线串联电感约为LT =X·L = 32nH, RT =X·R≈0. 02Ω结果如图4所示。

图4
图4

    图4中实线表示驱动门电路的输出脉冲上升沿波形, 虚线表示DAC5687末端接收波形。由于末端电容负载C 的影响, 振铃明显减少, 上升时间增加,末端上升时间仿真结果约为1. 3ns, 实测结果约为1. 5ns, 两者基本相符。

    由以上分析可得到结论, 单端高速数据总线的走线应尽可能的短, 并在终端端接匹配负载电阻, 以达到传输线匹配、提高数据传输速率的目的。

5 FPGA 设计

     依托通用底板, 针对DAC5687 功能背板进行FPGA 设计。其主要功能一是使FPGA 通过DAC5687 的串行编程接口( SPI) 对DAC5687 的内部寄存器进行设置; 二是实现内部DDS 数据源与DAC5687的严格同步。采用VHDL或V erilog 语言编写程序, 可以简便实现上述功能。DDS 与DAC5687的接口原理如图5所示。

    FPGA与DAC5687的数据及时钟接口框图

FPGA与DAC5687的数据及时钟接口框图
图5 FPGA与DAC5687的数据及时钟接口框图

    如图所示, 时钟管理模块将分别给FPGA 和DAC5687提供差分工作时钟。DAC5687利用内部锁相环PLL产生数据同步时钟, 经由NB4N855S变换成LVDS差分时钟信号传入FPGA 内部DDS数据源, 作为数据源工作时钟, 以保证信号样点数据和DAC转换工作时钟同步。DDS数据源将产生的A、B两路信号样点数据通过印制板上的单端高速数据总线传输到DAC5687, 最终完成数模转换。

6 结束语

    讨论了在CPC I通用底板上设计DAC5687数模转换背板的设计方法, 解决了单端高速数据传输线的布线和终端匹配问题, 为高速多通道信号模拟器提供了一种解决方案。

关键字:数模转换  高速多通道信号模拟器  大规模可编程逻辑 编辑:金海 引用地址:基于DAC5687的高速多通道信号模拟器设计

上一篇:京信数字直放站将采用恩智浦数模转换器
下一篇:无需精密电阻的DAC输出转换为单端信号的电路

推荐阅读最新更新时间:2023-10-12 20:18

大联大友尚集团推出瑞昱半导体声控芯片及第三方设计方案
2017年4月13日,致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布,其旗下友尚推出基于瑞昱半导体(Realtek)的声控芯片--- ALC4040,其提供USB 2.0接口,能够极好的实现commands和data的无缝连接传输,可应用于可穿戴装置、Type-C耳机、音箱等产品。 图示1-大联大友尚推出的Realtek ALC4040的声控芯片开发板照片 功能描述: • 内置Tensilica USB Audio Core • 数模转换器的信噪比为100dba • 模数转化器的信噪比为94dba • 立体声数字麦克风和模拟麦克风输入 • 电源管理及增强省电模式 • 单数字电源从1.6v至3.6v •
[模拟电子]
大联大友尚集团推出瑞昱半导体声控芯片及第三方<font color='red'>设计</font>方案
德州仪器推出集成型编解码器与数模转换器升级系列
德州仪器 (TI) 宣布推出面向电子书 (eBooks)、移动因特网设备以及便携式导航设备的音频编解码器与数模转换器 (DAC)。与分立式实施方案相比,这些高集成编解码器(TLV320AIC3100、TLV320AIC3110、TLV320AIC3111、TLV320AIC3120)和数模转换器(TLV320DAC3101、TLV320DAC3100、TLV320DAC3120)可显著降低组件数量与系统成本,并支持增强型音频特性,可提升消费者的聆听体验。此外,这些器件还具有引脚对引脚及软件兼容性,可简化软硬件开发,加速产品的上市进程。申请编解码器样片,敬请访问: http://focus.ti.com.cn/cn/docs/
[模拟电子]
德州仪器推出集成型编解码器与<font color='red'>数模转换</font>器升级系列
吉时利2602型数字源表数模转换器测试实例
为了说明2602型数字源表在多通道、多功能测试应用中的源表能力和灵活性,让我们看一下8-位乘法数模转换器(DAC)的测试序列。图1给出这个应用的测试设置。通过TSP-Link连接的每个仪器都被分配一个唯一的节点编号,类似于GPIB地址。DAC实例使用两个节点(节点1和节点2),每个节点都有两个源-测量单元SMU(SMU A和SMU B)。节点1是 主 节点,节点2是 从 节点。控制器通过GPIB (或RS-232)发送命令或下载完整的测试脚本至主设备,主设备则通过TSP-Link向从设备发送命令。 DAC需要直流电源和基准电压。 节点2的SMU A将向DAC提供+15VDC。当所有数字输入设置为低电平时,它将测量D
[测试测量]
吉时利2602型数字源表<font color='red'>数模转换</font>器测试实例
基于单片机控制的数显质量测量仪设计
在现代商业贸易和日常生活中,数显质量测量仪即智能电子称是常用的电子衡器,但目前市场上使用的称量工具结构复杂、运行不可靠成本高、精度稳定性不好、易损件多、维修困难等。本文基于STC89C52单片机,研发了一种使用键盘输入数据,操作简单方便;液晶显示所称量的物品质量、单价和物品总价;具有去皮功能;当物品重量超过电子秤量程,即过载情况下具有超重报警的功能,是一款小型化、重量轻、携带方便、计量准确、工作可靠、读数直观的智能电子称。 1 系统总体方案设计 本设计基于52系列单片机STC89C52,利用了模块化设计的思想,将系统的硬件分成质量数据采集模块、单片机控制数据处理模块和人机交互界面模块等三大部分。 质量数据采集模块主要由压
[单片机]
基于单片机控制的数显质量测量仪<font color='red'>设计</font>
高速数模转换器的数字特性
 当今的高速数模转换器 (DAC) 通常都包含有许多数字信号处理模块,让其更加易于使用。应论述需要,我们使用了 TI 的 DAC34H84,它是一款 4 通道、16 位、1250 Msps 的 DAC。这样做的原因是,它是一种典型的高速数模转换器,拥有隔离输入和 DAC 时钟域的输入 FIFO、插值数字模块、精细频率分辨率数字正交调制、模拟正交调制器校正以及 sin(x)/x 校正。本文将逐一介绍这些特性的功能和作用。      图 1 DAC34H84 功能结构图   第一个数字模块是插值模块,它负责增加 DAC 内部数字信号的采样速率。一般而言,利用两倍采样速率增加步骤,来实现插值。利用在输入
[模拟电子]
<font color='red'>高速</font><font color='red'>数模转换</font>器的数字特性
基于51单片机的三角波信号发生器设计
一、任务要求: 设计内容 选择51单片机,晶振采用12MHz。 设计一个能产生50HZ至100HZ的三角波信号。通过0832/A芯片完成数模转换。 频率值由LED数码管键盘输入。 将频率由LED数码管显示(4位) 设计要求 按照任务书的要求完成系统分析及方案设计。 完成硬件原理图的设计,并设计相关元器件。 完成控制软件流程图的设计,编写相应的单片机控制程序。 撰写设计报告。 二、仿真过程展示 程序烧录仿真界面: K1第一次按下界面 按3次K1后界面 K2、K3可对波形频率进行调整;K4、K5可对占空比进行调整。 频率的值是可以通过这里改的
[单片机]
数字电位器和数模转换器的区别
 1 引言   利用数字输入控制微调模拟输出有两种选择:数字电位器和数/模转换器(DAC),两者均采用数字输入控制模拟输出。通过数字电位器可以调整模拟电压;通过DAC既可以调整电流,也可以调整电压。电位器有三个模拟连接端:高端、抽头端(或模拟输出)和低端(见图1a)。DAC具有队应的三个端点:高端对应于正基准电压,抽头端对应于DAC输出,低端则可能对应于接地端或负基准电压端(见图1b)。      DAC和数字电位器存在一些明显区别,最明显的差异是DAC通常包括一个输出放大器/缓冲器,而数字电位器却没有。大部分数字电位器需要借助外部缓冲器驱动低阻负载。有些应用中,用户可以轻易地在DAC和数字电位器
[工业控制]
数字电位器和<font color='red'>数模转换</font>器的区别
高速DSP系统PCB板的可靠性设计
  引言   由于微电子技术的高速发展,由IC芯片构成的数字电子系统朝着规模大、体积小、速度快的方向飞速发展,而且发展速度越来越快。新器件的应用导致现代EDA设计的电路布局密度大,而且信号的频率也很高,随着高速器件的使用,高速DSP(数字信号处理) 系统设计会越来越多,处理高速DSP应用系统中的信号问题成为设计的重要问题,在这种设计中,其特点是系统数据速率、时钟速率和电路密集度都在不断增加,其PCB印制板的设计表现出与低速设计截然不同的行为特点,即出现信号完整性问题、干扰加重问题、电磁兼容性问题等等。   这些问题能导致或者直接带来信号失真,定时错误,不正确数据、地址和控制线以及系统错误甚至系统崩溃,解决不
[嵌入式]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved