当选择数模转换器 (DAC) 时,设计师可以从种类繁多的 IC 中选择。DAC 可以针对具体的应用划分成很多不同类别。不过,DAC 的划分也可以简化,仅分成 DC 或低速调节所需的 DAC和产生高速波形所需的 DAC。 本文专注于低速应用所需的 DAC,而无论该应用是低分辨率还是高分辨率、是粗略调节还是精细调节。
就选择低速 DAC 而言,决定设计是闭环、开环或“设定后便不需再过问”的系统是很重要。每一种设计都需要一个具某些关键性能规格的 DAC。
闭环系统
闭环系统包括一条反馈通路,以检测和校准任何误差。传感器根据诸如伺服电动机、流量阀或温度检测单元等的物理参数监视输出。然后传感器将数据馈送回控制器,而控制器则利用这个信息决定是否需要校正。
DAC 和模数转换器 (ADC) 是位于闭环系统核心的关键组件。DAC 用在前馈通路中以调节系统,ADC 用在反馈通路中,以监视这些调节的效果。它们一起施加和检测模拟控制信号,以真实地调节它们控制的参数。
电动机控制是这类闭环系统的一个例子,如图 1 中详细说明的那样。首先,将一个想要的输出 (设定点) 加到控制器上,控制器对这个输出和反馈信号进行比较。如果需要校正,那么控制器会调节 DAC 的输入编码,然后 DAC 在其输出端产生一个模拟电压。该 DAC 的输出电压通过一个功率放大器放大,以给电动机提供所需的驱动电流。
在这个闭环系统的下一级,用一个转速计测量电动机的旋转速度。旋转信号是该闭环系统的实际输出或可变过程。ADC 将该转速计的输出数字化,并将数据发送到控制器,在控制器中,由算法决定是否需要在 DAC 输出以及最终的电动机上进行任何校正。采用这种方式,误差被降到可接受的水平。理想情况下,反馈允许闭环系统消除所有误差,从而有效地限制噪声、温度、外 力或其他不想要的信号等任何误差来源的影响。
闭环系统的性能取决于准确的反馈通路,包括传感器和 ADC。本质上,反馈通路补偿了前馈通路的误差。因为 DAC 在前馈通路中,其积分非线性 (INL) 误差就自动得到了补偿。INL 误差是 DAC 输出端实际的传递函数与理想传递函数之间的偏差。不过,DAC 必须有良好的差分非线性 (DNL),并且必须相对于数据表中规定的位数呈单调性。DNL 误差是 DAC 模拟输出端的实际电压变化与理想电压步进 (等于 DAC 输入编码中 1 个最低有效位 (LSB) 步进) 之差。单调的 DAC 意味着,模拟输出始终随着数字编码的提高而提高或保持与其相同 (反之亦然)。始终大于 -1LSB 的 DNL 规格意味着单调性。图 2 显示 DAC 模拟输出电压相对于 DAC 输入编码的传递函数。
如果 DAC 不是单调的,那么会存在一个负反馈变成正反馈的区域。这可能导致振荡,而振荡最终可能毁坏电动机。
图 1:闭环系统举例
图 2:DNL 传递函数
开环系统
开环系统没有反馈通路。这意味着,系统自身必须是准确的。开环控制对于良好定义的系统是有用的,在这类系统中,输入编码及其在负载上所导致行动之间的关系是已知的。如果负载不是非常可预测的,那么最好使用闭环控制。
开环系统的一个例子如图3所示。在这个例子中,DAC 驱动凌力尔特稳压器 LT3080 的 SET 电压引脚。SET 引脚是误差放大器的输入和输出电压的调节设定点。LT3080 的输出电压范围为 0V 至绝对最大额定输出电压。
DAC 的分辨率决定 SET 引脚调节的步进大小。例如,一个具有 5V 基准的 8 位 DAC 有 5V / 28 = 19.5mV 的 LSB。一个具有同样 5V 基准的 12 位 DAC 有 1.2mV 的 LSB,一个 16 位 DAC 有 76µV 的 LSB。这意味着,就一个理想 DAC 而言,数字编码每增大一次,模拟输出都应该增加 76µV。
开环系统中的其他重要参数包括偏移、增益误差、基准电压误差以及这些参数随时间和温度变化的稳定性。INL 尤其重要,因为与闭环系统相比,DAC 的 INL 对系统的总体线性度有直接影响。
图 3:开环系统举例
“设定后便不需再过问”的系统
DAC 线性度起到重要作用的第三种应用是“设定后便不需再过问”的系统。在这类系统中,调节或校准只进行一次,也许在制造时或安装时。因此,这类系统一开始是一 种闭环系统,然后又变成开环的。所以,与初始准确度 (偏移、增益误差、INL) 有关的任何参数都不关键,因为这些参数在调节时都得到了补偿。但是一旦反馈去掉,稳定性就变得很关键了。表明稳定性的数据表性能规格包括:增益误差漂移、 失调和基准漂移。图 4 显示一个“设定后便不需再过问”的应用例子。在这张图中,一个较低分辨率的 DAC 驱动一个可编程增益放大器,该放大器设定精准 DAC 偏移调节引脚上的电压。在初始系统校准时,该较低分辨率 DAC 用来有效地校准精准 DAC 的增益偏移。这个调节代码可以存储在非易失性存储器中,并在系统每次加电时装载。
图 4:“设定后便不需再过问”的系统举例
进一步了解 DAC DC 性能规格
一旦决定了闭环、开环或“设定后便不需再过问”系统的类型,就该选择最好的 DAC 了。正如之前提到的那样,有些应用需要粗略调节,这意味着系统仅需要有限数量的可变设置。在这种情况下,8 位或 10 位分辨率的 DAC 一般就足够了。就需要更精细控制的系统而言,12 位 DAC 可以提供足够的分辨率。在今天的市场上,16 位和 18 位 DAC 提供最精细的每 LSB 分辨率。
LTC2600 是一种 16 位 8 通道 DAC,是为闭环系统而设计的。看一下它的 DC 性能规格会发现这是很明显的。典型的 INL 是 ±12LSB,最大值为 ±64LSB。典型的 INL 随输入代码的变化曲线在图 5 的下部显示了这些性能规格。16 位单调性和 ±1LSB DNL 误差允许在前馈通路中进行精准控制。正如前面提到的那样,前馈误差对闭环系统来说不重要,只要该 DAC 是单调的就行。
相反,新的 LTC2656 是一种 8 通道 DAC,所有 8 个 DAC 都提供 16 位单调性和卓越的 ±4LSB INL 误差,从而使该器件可能同时适合开环和闭环系统。LTC2656 封装中所有 8 个 DAC 的典型 INL 随代码变化的曲线如图 5 所示。在 16 位 8 通道 DAC 类别中,LTC2656 提供最佳 INL。
单个封装中的 8 个 DAC 都实现高线性度不是一个容易的设计任务。封装压力和电压随温度的漂移都必须在设计中考虑到。单个 DAC 实现较严格的 INL 性能规格会容易得多。例如,凌力尔特公司提供的 LTC2641 是一种单 16 位 DAC,该器件提供 ±1LSB INL 和 DNL 的最高 DC 性能规格。
除了 INL 和 DNL,其他要考虑的重要 DC 性能规格是偏移误差 (或零标度误差) 和增益误差 (满标度误差)。偏移误差表示,在 (或接近) 零标度输入编码时,实际传递函数与理想传递函数的匹配程度。就需要直到地的精准控制应用而言,偏移误差是非常重要的。LTC2656 提供非常低的 ±2mV 最大偏移误差。
增益误差表示实际传递函数斜率与理想传递函数斜率的匹配程度。增益误差和满标度误差有时可互换使用,但是满标度误差同时包括增益误差和偏移误 差。LTC2656 提供 ±64LSB 的最大增益误差,这等于满标度的0.098% (64/65536),是一个非常小的最大增益误差。
具有非常好的偏移和增益误差的 DAC 可能允许系统不必运行控制器或 FPGA 中软件的校准周期。一个随时间和温度变化漂移非常小的 DAC 还使设计更简单,因为系统工程师不需要经常校准。
图 5:LTC2656 与 LTC2600 的比较
图 6:LTC2656 方框图
±10V 输出的 DACs
之前提到的 DAC 用于单电源或单极性 0V 至 5V 系统。不过,有些闭环、开环或“设定后便不需再过问”的系统需要 ±10V DAC。就这些高压系统而言,设计师既可以用具可编程增益放大器的单极性 0V 至 5V DAC来执行增益和电平移动,或者也可以由 DAC 直接提供 ±10V 的信号。
凌力尔特公司提供单、双和四通道 DAC 供客户选择,这些 DAC 提供高达 ±10V 的输出电压。LTC1592 是单通道 16 位 DAC 的一个例子,该器件提供两个单极性和 4 个双极性可由软件编程设定的输出电压范围,包括 0V 至 5V、0V 至 10V、±2.5V、±5V、±10V 和 -2.5V 至 7.5V。因此,同一个 DAC 既可以用于单极性系统也可以用于双极性系统,而无需彻底地重新设定控制器。例如,将 DAC 输出范围从 0V 至 5V 改变到 ±10V,仅需要改变至 DAC 串行位流中的两个位。
结论
DAC是开环、闭环或“设定后便不需再过问”系统的关键组件。这类系统每一种都需要 DAC 提供不同级别的准确度和分辨率。在特定分辨率时,总是有一些因素需要权衡,如价格、封装大小、基准准确度和输出阻抗。就最高精确度的系统而言,选择 DAC 时很重要的是不仅要考虑数据表第一页上提供的位数是多少,还要考虑 INL、DNL、偏移误差、增益误差等 DC 性能规格保证有多高的准确度。
上一篇:无需精密电阻的DAC输出转换为单端信号的电路
下一篇:A/D转换器ADS7864在电网谐波分析仪中的应用
推荐阅读最新更新时间:2023-10-12 20:18
基于双12位DAC的高精度直流电压/电流源设计
引言 在仪表校准中,希望直流电压源或电流源的精度与分辨率足够高,因为这是仪表能否校准好的关键所在。然而,单纯使用单个DAC的方法不仅成本高,而且各项性能并不能得到保证,因此,本文提出了一种使用一个双通道DAC来实现高精度直流电压/电流源的方法,即一个通道实现高精度要求,另一个通道实现动态范围要求。这样不仅节约了成本,精度也达到了要求。
系统设计实现 设计的思路是先产生一个分辨率为0.02mV、动态范围为0~2.5V的标准电压信号Vstand,然后通过放大电路将该基本电压放大5倍,就可以得到0~12.5V、分辨率为0.1mV的直流电压,从而实现高精度的电压源。而动态范围为0~20mA、分辨率为0.001mA的高精度电流源则
[应用]
Programmable-Gain Amplifier, Using the MAX532 DAC
Abstract: This application note discusses how to use the MAX532 to build a programmable gain amplifier (PGA) that's suitable for AC gain control. No external components are necessary. Equations are provided to easily calculate the output values. -- ===================================================================
[模拟电子]
更高的集成度、更低的成本需要更深入的系统理解
行业分析师们一致认为未来系统的发展趋势是移动便携、“绿色”节能,以及在终端设备中集成更多的传感器。这种发展趋势,要求模数 (ADC) 转换器和数模 (DAC) 转换器具有更多的通道数、更高的速度和性能,同时还要求更低的功耗预算、更小的尺寸以及更低的成本。
各大数据转换器厂商通过制造更多集成了其他电路组件的数据转换器对这些需求做出了积极的响应。尽管在许多微处理器内核周围有大量的外围设备,一些性能需求正推动许多特殊模拟前端或者其他模拟“配套”芯片的发展,其与一颗单独的处理器一起工作。
例如,TI 最近推出了 ADS1298 ,其为一款完整的心电图(ECG)系统前端。它将八个具有可编程增益放大器和大量辅助电路的
[电源管理]
基于精密DAC的波形生成应用设计分析
相信多数工程师在工作中都使用过示波器和信号发生器,前者作为信号的捕获设备,后者作为信号的产生设备,它们是工程师手中的一对非常实用的工具,其中任意波形信号发生器(AWG)就是常见的设备之一。在模拟信号或者模拟数字混合信号应用领域,任意波形发生器有着非常普遍和广范的应用。比如产生激励信号来模拟某种传感器,例如汽车碰撞实验的复现,或者产生高速模拟信号来测试某种芯片的功能。 从简单的正弦波产生到复杂一点的AM/FM调制信号,再到更加复杂的QAM调制信号等都有着任意波形发生器的应用。 本文介绍精密DAC在波形发生器中的关键作用,并提出基于亚德诺半导体公司(ADI)先进的DAC技术的方案选型建议。 波形发生是DAC的几大核心应用之
[模拟电子]
STM8L15x系列DAC的使用
在项目中偶尔会使用DA转换器,我使用的MCU是STM8L151G6U6。我是用的是PB4作为DA输出管脚,查阅该芯片的Reference manual手册可知,PB4是属于DAC_OUT1,即DAC通道一。 再查阅PB4输入输出控制,PB4对应的是开关15。 下面是我用软件触发模式使用的DAC配置代码。 dac.h头文件代码如下: #ifndef __DAC_H__ #define __DAC_H__ #ifdef __cplusplus extern C { #endif #include stm8l15x.h /* DAC_OUT --- PB4(DAC_OUT) */ #define DAC_O
[单片机]
TI具低干扰及内部参考的四通道DAC
德州仪器推出系列四通道数模转换器 (DAC),其具备0.15nV-s的低干扰以及温度漂移为 2ppm/C 与初始精度为 0.02% 的内部 2.5V 参考电压。该系列 16 位、14 位以及 12 位多功能器件拥有多通道性能,适用于工业过程控制、数据采集以及仪表应用等领域中通道数量较高的便携式系统。
DAC8564/65(16 位)的特性包括可实现器件+/- 0.5 LSB 差分非线性 (DNL) 以及 +/- 4LSB 的积分非线性 (INL)。DAC8164/65(14 位)与 DAC7564/65(12位)的相对准确度均为 +/- 1LSB。3V 时功率仅为 2.9mW 的超低功耗以及可将5V 电压下的电流消耗
[模拟电子]
闭环反馈控制功率电子变换系统不稳定性抑制技术
1、 引言 四种功率电子变换器AC/AC、AC/DC、DC/DC、DC/AC通常都含有LC输出滤波器。闭环反馈控制功率电子变换系统容易发生不稳定现象,因此,不稳定性抑制技术就成了电力电子学重要的研究课题。 LC输出滤波器是个二阶系统,一般把它的前端电压作为控制量,其频谱特性与变换器的控制策略及负载性质有关,输出滤波器的作用就是滤除其中的高次谐波,以得到所需电压波形。 闭环反馈控制功率电子变换系统的行为包括稳态响应和瞬态响应。为了使这两类响应达到系统的要求,常引入补偿装置来改善系统的性能。本文在分析研究了功率电子变换系统多种不稳定性抑制技术的基础上,提出并研究了一种具有抑制振荡功能的可控阻尼LC输出滤波器,仿真及试验结果
[电源管理]
意法半导体在DAC 会上发布设计方法新进展
中国,2009年8月10日 —— 全球领先的创新半导体公司意法半导体(纽约证券交易所代码:STM),携多篇独创论文和合著论文参加日前在加州旧金山举行的DAC 2009(设计自动化国际研讨会)。在复杂系统级芯片(SoC)的3D叠装、物理设计、系统级芯片设计和IC可靠性领域,意法半导体的设计方法与自动化取得众多新进展,成为关注重点。
在DAC 2009“管理日”专题研讨会上,意法半导体中央CAD及设计解决方案部总经理Philippe Magarshack发布论文《3-D叠装:消费电子系统级芯片的发展机遇与趋势》,这篇论文探讨一项很有前景的3-D集成技术,具有更高的晶体管密度、更快的连接速度、异类技术集成、更低功耗和成本
[半导体设计/制造]