高精度,低成本电流源使用AD8276差分放大器和AD8603

最新更新时间:2011-02-05来源: 互联网关键字:AD8276  差分放大器 手机看文章 扫描二维码
随时随地手机看文章

Current sources are widely used in industrial, communication, and other equipment for sensor excitation and machine-to-machine communication, etc. For example, the 4 mA-to-20 mA loop is widely used in process control equipment.

Programmable current sources can be built using a DAC, amplifier (op amp or difference amplifier), and matched resistors. Low value current sources can be integrated into low output current sources or amplifiers. For example, the AD8290 is an instrumentation amplifier with a single integrated current source, and the AD7794 is a high resolution Σ-Δ ADC with two integrated current sources. For high currents, external MOSFETs or transistors will generally be required.

Current sources using the low power AD8276 difference amplifier and the AD8603 op amp are affordable, flexible, and small in size. Performance characteristics such as initial error, temperature drift, and power dissipation are excellent.

<-- popup for enlarge -->

High Precision, Low Cost Current Sources Using the AD8276 Difference Amplifier and the AD8603 Op Amp (CN0099)

Figure 1: Current Source Using the AD8276 Difference Amplifier and the AD8603 Op Amp (Simplified Schematic)

Figure 1: Current Source Using the AD8276 Difference Amplifier and the AD8603 Op Amp (Simplified Schematic)
Circuit Description

The current source circuit is shown in Figure 1. Reference voltage, VREF, is applied to the noninverting input of the AD8276. This voltage controls the amount of output current, IO. The inverting input of the AD8276 is connected directly to ground. There are four laser-trimmed, 40 kΩ resistors inside the AD8276 that are connected to the input pins, the REF pin, and the SENSE pin. The output of the AD8276 is used to drive a transistor if a high current output is needed.

If the resistors are perfectly matched, the input voltage, VREF, appears across R1, thereby producing a constant load current, IO, which is equal to VREF/R1.

The AD8603 op amp is used in the feedback loop of the circuit and was chosen because of its low bias current (maximum 1 pA) and offset voltage (less than 50 μV). The low bias current makes it possible to interface to a high impedance load without introducing significant offset errors. The AD8603 low temperature drift specification (4.5 μV/°C maximum) allows operation over a wide temperature range, and the amplifier also features low noise and rail-to-rail inputs and outputs.

The value of the output current, IO, can be calculated by using the equation



Because the AD8276 has very tight resistor matching, RF1/RG1 = RF2/RG2 = 1, and Equation 1 can be simplified as

Equation 1 shows that the primary errors of the circuit in Figure 1 are due to the internal resistor matching, the tolerance of R1, and the tolerance of the load resistance. The AD8276 (B-grade) maximum gain error is 0.02%. The AD8276 (A-grade) maximum gain error is 0.05%. Overall accuracy of 0.02% is possible with the circuit.

At the same time, the accuracy of R1 is critical, so it should have 0.1% tolerance or better. This error can be removed by calibration.

The amount of output current, IO, available from the circuit is limited by the op amp input range, the difference amplifier output range, and the difference amp SENSE pin voltage range.

Based on Figure 1, three conditions have to be met:

  1. VLOAD = IO × RLOAD must be within the AD8603 op amp input range.

  2. VOUT = IO × (RLOAD + R1) must be within the AD8276 SENSE pin voltage range: 2(−Vs) − 0.2 V to 2(+Vs) − 3 V.

  3. IO × (RLOAD + R1) + 2(−Vs) − 0.2 V to 2(+Vs) − 3 V must be within the AD8276 output voltage range: –Vs + 0.2 V to +Vs − 0.2 V.

The AD8276 rail-to-rail output feature and the ability to operate on a 2.5 V to 36 V power supply allow a wide range of output current.

The AD8276B offset voltage drift of 2 μV/°C maximum and gain drift of 1 ppm/°C maximum yield low temperature drift and wide temperature operation. The specifications for the AD8276A are 5 μV/°C and 5 ppm/°C, respectively.

Both the AD8276 (8-lead MSOP) and the AD8603 (5-lead TSOT-23) are in small packages, thereby minimizing the board area required by the circuit.

The external current source transistor, T1, should have a VCB breakdown voltage higher than the AD8276 supply voltage. The transistor maximum collector current should be higher than the expected output current with suitable headroom, and the transistor power dissipation limits must be observed. Low cost transistors, such as the 2N3904, 2N4401, 2N3391, and MPSA06 are recommended.

The AD8276 can drive output currents of 15 mA or less without the need for the external transistor or MOSFET.

Testing results under room temperature based on theAD8276A, AD8603, and 2N3904 are shown in Figure 2. R1 is 50 Ω with 0.1% tolerance. It is obvious that the actual output complies with the calculated results. On the scale shown, the measured results are indistinguishable from the ideal results because they are within 0.5% of each other with the average of less than 0.1% limited by the R1's tolerance.

<-- popup for enlarge -->

High Precision, Low Cost Current Sources Using the AD8276 Difference Amplifier and the AD8603 Op Amp (CN0099)

Figure 2: Test Results for Current Source Using the AD8276A, AD8603, and 2N3904 (R1 = 50 Ω, RLOAD = 100 Ω, Vs = +5 V, TA = 25°C)

Figure 2: Test Results for Current Source Using the AD8276A, AD8603, and 2N3904 (R1 = 50 Ω, RLOAD = 100 Ω, Vs = +5 V, TA = 25°C)

As with any high accuracy circuit, proper layout, grounding, and decoupling techniques must be employed. See Tutorial MT-031, Grounding Data Converters and Solving the Mystery of AGND and DGND and Tutorial MT-101, Decoupling Techniques for more details.

Common Variations

If higher power supplies are needed for higher value output current, the OP1177, AD8661, and AD8663 can be used. The important specifications are power supply range, bias current, offset voltage, input voltage range, and temperature drift.

If a fixed current source is required, VREF can be supplied by a voltage reference such as the ADR36x family.

The ADR82x family integrates a voltage reference and an op amp and can operate on a power supply up to 36 V. This provides an additional space saving option.

If a dual-current source is needed, the AD8607 and the are good choices.

If programmable current sources are needed, use a precision 14-bit or 16-bit DAC to generate the reference voltage, VREF. The AD5560, AD5060 (single), and AD5663R (dual) are suitable for this application.

关键字:AD8276  差分放大器 编辑:神话 引用地址:高精度,低成本电流源使用AD8276差分放大器和AD8603

上一篇:AD8295差分输出最少元件连接图电路图
下一篇:1KHZ~1MHZ频率范围内信号电平不变的ALC(自动电平控制)放大器

推荐阅读最新更新时间:2023-10-12 20:19

基于运算放大器的PIN驱动器电路
PIN二极管在重掺杂的P区和N区之间夹有一层轻掺杂的本征区(I),此类二极管广泛用于射频与微波领域。常见应用是要求高隔离度和低损耗的微波开关、移相器和衰减器。在测试设备、仪器仪表、通信设备、雷达和各种军事应用中,可以发现这类二极管的身影。   开关电路中,每个PIN二极管都有附随的PIN二极管驱动器或开关驱动器,用来提供受控正向偏置电流、反向偏置电压以及控制信号(通常是一个数字逻辑命令)与一个或多个PIN二极管之间的激活接口。根据应用需要,可以采用分立设计或专门IC实现这种驱动器功能。   另一方面,也可以使用随处可得的运算放大器以及箝位放大器、差分放大器等特殊放大器作为备选方案,代替分立PIN二极管驱动电路
[模拟电子]
LTC6605-10-具低噪声、低失真差分放大器的双通道、匹
LTC6605 描述 LTC®6605-10 包含两个独立的全差分放大器,被配置成匹配的二阶 10MHz 低通滤波器。滤波器的 f-3dB 在 9.7MHz 至 14MHz 范围是可调的。 内部放大器是全差分型的,具有非常低的噪声和失真,而且与 16 位动态范围系统相兼容。输入能够接受单端或差分信号。为每个放大器提供了一个输入引脚,用于设定差分输出的共模电平。 经过激光修整的内部电阻器和电容器负责确定一个精准、高度匹配的 (在增益和相位上) 10MHz 二阶滤波器响应。用于每个通道的单个可任选外部电阻器能够修整每个放大器的频率响应。 三态 BIAS 引脚用于确定每个放大器的功耗,从而允许在停机、中等功率或满功率
[模拟电子]
LTC6605-10-具低噪声、低失真<font color='red'>差分放大器</font>的双通道、匹
采用差动放大器AD8276实现精密电流源的优越性
采用精密电流源提供恒定电流已应用于众多领域, 包括工业过程控制、仪器仪表、医疗设备和消费电子产品。例如,过程控制系统利用电流源提供电阻温度检测器(RTD)所需的激励电流;数字万用表利用电流源测量未知电阻、电容和二极管;长距离信息传输广泛使用电流源来驱动4mA至20mA电流环路。 图1 差动放大器和运算放大器构成精密电流源 精密电流源传统上采用运算放大器、电阻和其它分立器件构建,但存在尺寸、精度和温度漂移等方面的不足。现在,高精度、低功耗、低成本集成差动放大器(例如AD8276)的出现,使得尺寸更小、性能更高的电流源变成现实,如图1所示。反馈缓冲器使用低失调、低偏置电流放大器,例如AD8538、AD8603、AD8605、AD86
[电源管理]
采用差动放大器<font color='red'>AD8276</font>实现精密电流源的优越性
美国国家半导体推出3款能源转换效率极高的高速差分放大器
美国国家半导体利用以上几款放大器配合该公司多款模拟/数字转换器、时钟调整器及电源管理集成电路,分别设计了三款参考设计电路板, 适用于无线通信基础设备、测试和测量仪表以及国防和航天设备 二零零七年九月二十四日 -- 中国讯 -- 美国国家半导体公司 (National Semiconductor Corporation)(美国纽约证券交易所上市代号:NSM)宣布推出3款能源转换效率极高的全新高速差分放大器,其特点是应用范围极广,尤其适用于无线通信基础设备、测试和测量仪表以及国防和航天设备。这3款放大器是美国国家半导体PowerWise高能效模拟芯片系列的最新型号。这几款新产品的推出显示了美国国家半导体高度重视系统设计的能源转
[新品]
LTM4601HV 5V/8A设计无差分放大器
  LTM4601HV是一款完整的12A降压型开关模式DC/DC电源,具有板上开关控制器、MOSFET、电感器和所有的支持元件。该µModule内置于一个小巧的表面贴装型15mm×15mm×2.82mmLGA和15mmx15mmx3.42mmBGA封装中。LTM4601HV可在4.5V至28V的输入电压范围内运作,支持0.6V至5V的输出电压范围以及输出电压跟踪和裕度调节功能。这种高效设计可提供12A的连续电流(峰值达14A)。仅需采用大容量输入和输出电容器便可完成设计。
[电源管理]
LTM4601HV 5V/8A设计无<font color='red'>差分放大器</font>
差分放大器驱动高速ADC的电路
目前,用来驱动ADC的方案有两种,第一种是使用变压器,第二种则是差分放大器, 新型的差分放大器 差分放大器有几个优点。第一是抗噪声能力,这一点在介绍差分信号时已经提及了。第二个优点是增加了差分输出电压摆动(见图2)。这其中的道理也不复杂,输出端的两电压为反相,其差值当然是单端输出的2倍了。 第三个优点是减少了偶数阶的信号失真。为了解释这个道理,我们把输出端电压表示成输入端的多阶函数合。 图2 差分输出电压摆 V out + = k1V in + k2V in 2 + k3V in 3 + … , (1) V out - = k1(-V in ) + k2(-V in
[模拟电子]
<font color='red'>差分放大器</font>驱动高速ADC的电路
ADI基础教程:差分放大器以及相关设计软件的基础知识
这场基础教程介绍差分信号及差分放大器的特点,如何对差分运放电路进行分析,还介绍了ADI的差分放大器计算器软件和相关资源。
[模拟电子]
差分放大器/ADC驱动器提供10GHz增益带宽并具1.1nV/√Hz噪声
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) 和马萨诸塞州诺伍德 (NORWOOD, MA) – 2017 年 3 月22 日 – 亚德诺半导体 (Analog Devices, Inc.,简称 ADI) 旗下凌力尔特公司推出 10GHz 增益带宽积双差分放大器 LTC6419,该器件具非常低的 1.1nV/√Hz 输入电压噪声密度,因而能够为宽带信号放大提供卓越的 SNR 性能。此外,LTC6419 是低失真的,在 100MHz 时提供 85dB 无寄生动态范围 (SFDR),同时驱动 2VP-P 信号。用 4 个外部电阻器设置每个放大器的差分增益,可配置范围从单位增益和频率响应超过 1GHz、增益为 100 和 100
[模拟电子]
双<font color='red'>差分放大器</font>/ADC驱动器提供10GHz增益带宽并具1.1nV/√Hz噪声
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved