音频信号及音频分析

最新更新时间:2011-10-06来源: 互联网关键字:音频  信号 手机看文章 扫描二维码
随时随地手机看文章

音频信号及音频分析
音频是多媒体中的一种重要媒体。我们能够听见的音频信号的频率范围大约是20Hz-2OkHz,其中语音大约分布在300Hz-4kHz之内,而音乐和其他自然声响是全范围分布的。声音经过模拟设备记录或再生,成为模拟音频,再经数字化成为数字音频。这里所说的音频分析就是以数字音频信号为分析对象,以数字信号处理为分析手段,提取信号在时域、频域内一系列特性的过程。
各种特定频率范围的音频分析有各自不同的应用领域。例如,对于300-4kHz之间的语音信号的分析主要应用于语音识别,其用途是确定语音内容或判断说话者的身份;而对于20-20kHz之间的全范围的语音信号分析则可以用来衡量各类音频设备的性能。所谓音频设备就是将实际的声音拾取到将声音播放出来的全部过程中需要用到的各类电子设备,例如话筒、功率放大器、扬声器等,衡量音频设备的主要技术指标有频率响应特性、谐波失真、信噪比、动态范围等。

音频分析原理
音频分析的原理主要涉及数字信号处理的基本理论、音频分析的基本方法以及音频参数测量和分析内容,其中数字信号处理是音频分析的理论基础。
1.音频分析技术基础
傅立叶变换和信号的采样是进行音频分析时用到的最基本的技术。傅立叶变换是进行频谱分析的基础,信号的频谱分析是指按信号的频率结构,求取其分量的幅值、相位等按频率分布规律,建立以频率为横轴的各种“谱”,如幅度谱、相位谱。信号中,周期信号通过傅立叶级数变换后对应离散频谱,而对于非周期信号,可以看作周期T为无穷大的周期信号,当周期趋近无穷大时,则基波谱线及谱线间隔(ω=2π/T)趋近无穷小,从而离散的频谱就变为连续频谱。所以,非周期信号的频谱是连续的。
在以计算机为中心的测试系统中,模拟信号进入数字计算机前先经过A/D变换器,将连续时间信号变为离散时间信号,称为信号的采样。然后再经幅值量化变为离散的数字信号。这样,在频域上将会出现一系列新的问题,频谱会发生变化。由模拟信号变成数字信号后,其傅立叶变换也变成离散傅立叶变换,涉及到采样定理、频率混叠、截断和泄漏、加窗与窗函数等一系列问题。
2.音频分析方法
通常在对某音频设备音频测量分析时,该设备被看成是一个具有输入端口和输出端口的黑箱系统。将某种己知信号输入该系统,然后从输出端获取输出信号进行分析,从而了解该系统的一些特性,这就是音频分析的一般方法。输入音频设备的信号,称作激励信号。激励信号可以是正弦、方波等周期信号,也可以是白噪声、粉红噪声等随机信号,还可以是双音、多音、正弦突发等信号。最常用的检测分析方法有正弦信号检测、脉冲信号检测、最大长度序列信号检测等。

音频参数测量及分析
音频测量一般包括信号电压、频率、信噪比、谐波失真等基本参数。大部分音频参数都可以由这几种基本参数组合而成。音频分析可以分为时域分析、频域分析、时频分析等几类。由于信号的谐波失真对于音频测量比较重要,因此将其单独归类为失真分析。以下分别介绍各种音频参数测量和音频分析。
1、基本参数测量
音频测量中需要测量的基本参数主要有电压、频率、信噪比。电压测试可以分为均方根电压(RMS)、平均电压和峰值电压等几种。
频率是音频测量中最基本的参数之一。通常利用高频精密时钟作为基准来测量信号的频率。测量频率时,在一个限定的时间内的输入信号和基准时钟同时计数,然后将两者的计数值比较后乘以基准时钟的频率就得到信号频率。随着微处理芯片的运算速度的提高,信号的频率也可以利用快速傅立叶变换通过软件计算得到。
信噪比是音频设备的基本性能指标,是信号的有效电压与噪声电压的比值。信噪比的计算公式为:

在实际测量中,为方便起见,通常用带有噪声的信号总电压代替信号电压计算信噪比。
2、时域分析
时域分析通常是将某种测试信号输入待测音频设备,观察设备输出信号的时域波形来评定设备的相关性能。最常用的时域分析测试信号有正弦信号、方波信号、阶跃信号及单音突变信号等。例如将正弦信号输入设备,观察输出信号时域波形失真就是一种时域分析方法。
方波分析具有良好的突变性及周期性,通过观察设备对方波信号的输出信号波形能够很好的检测设备的各项性能,因此方波信号成为最常用的时域分析信号。图1是音频设备对方波的响应信号在半个周期(上升沿)内的具体描述。描述方波响应有上升时间、峰值振荡、过冲量及倾斜度等几个最主要参数。

阶跃信号分析比较简单,主要用来检测音频设备对于信号突变的响应灵敏度。阶跃信号分析的参数通常两个,就是阶跃响应信号的上升时间和脉冲宽度。上升时间越小,设备对于信号突变的响应越灵敏,瞬态特性越好;脉宽越小,设备的阻尼特性越好,系统越稳定。
正弦信号在某个时刻峰值突然升高,形成突变,就是单音突变信号。由于单音突变信号的能量集中在一个很窄的频率范围,因此常用单音突变信号检测音频设备在某个特定频率的响应情况。单音突变信号的主要用途是快速判定某些音频设备,例如扬声器的阻尼特性等。


3、频域分析
频域分析是音频分析的重要内容,频域分析的主要依据是频率响应特性曲线图。前面提到的正弦检测、脉冲检测及最大长度序列信号检测都能够得到设备的频率响应。频率响应曲线图反映了音频设备在整个音频范围内的频率响应的分布情况。一般来说曲线峰值处的频率成分,回放声压大、声压强;曲线谷底处频率成分声压小、声音弱。若波峰和波谷起伏太大,则会造成较严重的频率失真。
4、时频分析
时频特性描述了音频设备在时间轴上随着时间的变化其频域特性的变化情况。时频特性不仅在频率的变化过程中描述了音频设备的响应状态,而且还在时间的变化过程中描述了音频设备的响应状态,也就是从三维的角度全面地描述了音频设备的响应特性。对于放音设备而言,主观听感的评述,如低音是否干净,背景是否清晰,层次是否分明,音场的深浅等均与音频设备的时频特性均有密切关系。音频设备的时频特性是客观评价音频设备性能优劣的一个很重要的方面。
5、失真分析
音频设备的失真包括谐波失真、互调失真、相位失真及瞬态失真等几类。音频测量中最重要的是谐波失真,谐波失真,简单地说就是声音信号经音频设备重放后多出来的额外的谐波成分。从听众的角度看,不同的发声物体所发出的声音是由不同的基波和谐波构成的,听众可以根据声音的特性分辨出发声的物体。如果功率放大器将某种乐器所发出的乐音(乐音由基波和谐波组成)放大,经扬声器放音后,对基波和各次谐波的波形形状、幅值和相位均能无失真的重现出来,则可以认为是高质量的放音;否则,扬声器所放出的声音听起来烦躁、别扭,则谐波失真己经达到无法忍受,甚至使人无法分辨发声乐器的种类。因此,谐波失真是音频设备的重要性能指标。
谐波失真的测量方法有两种,一种是以正弦信号输入待测设备,然后分析设备响应信号的频率成分,可以得到谐波失真。另一种更简单的测量方法是首先利用带阻滤波器滤除响应信号中的基频成分,然后直接测量剩余信号的电压,将其与原响应信号作比较,就可以得到谐波失真。显然第二种方法得到的谐波失真是THD+N,由于采用了信号的总电压值代替了基频分量电压值,因此得到的谐波失真比实际值偏小,且实际的谐波失真越大,误差越大。
在实际的音频测量时,通常在一定的频率范围内选取若干个频率点,分别测量出各点的谐波失真,然后将各谐波失真数值以频率为横坐标连成一条曲线,称为谐波失真曲线。如图2是某功率放大器在100-1OKHz范围内的总谐波失真和2阶、3阶及4阶谐波失真的曲线图。

音频分析仪器
这里所说的音频分析仪器是指既能够测量话筒、音频功放、扬声器等各类单一音频设备的各种电声参数,也能测试组合音响、调音台等组合音频设备的整体性能的分析类仪器。目前市场上已经出现了可用于测量音频设备的各类分析仪器,例如失真度分析器、频谱分析仪、频率计数器、交流电压表、直流电压表、音频示波器等。这些基于各种功能电路的机架式硬件仪器使用简便、测量精度较高,目前己经获得了广泛的应用。音频设备生产厂家可以利用音频分析仪器检查设备的性能,发现存在的缺陷,从而对设备的设计制造进行改进,消费者也可以利用音频分析仪器对设备进行评估,选择合适的产品。
以组合音响为例,在评价其性能时常常用到术语“音色”,所谓音色就是指音响因高次谐波不同而引起的声音差异。而音响的所谓“平衡感”则是指音响在全频段重放的量感听起来自然的程度。音频分析仪器的作用就是将评价设备各种行业术语以各种量化的特征参数形式表示出来,“音色”所对应的特征参数就是谐波失真的测量,而“平衡感”则涉及到设备在整个音频范围内的频率响应的分布情况。
一般说来,一台功能较为齐全的音频分析仪器应能测量信号交直流电压、信号频率、谐波失真、信噪比等参数。功能强大的音频分析仪器提供频谱分析、1/3倍频程分析、倍频程分析、声压级测量等功能。如果要组建音频分析系统,还需要一台标准音频信号发生器作为激励信号源。


音频分析利用时域分析、频域分析、失真分析等方法为手段,通过测量各类音频参数来评价音频系统的性能。音频分析是一种综合性的分析,涉及到众多的测试仪器,对于普通用户而言,需要根据其感兴趣的参数合理的选择测试仪器,很难建立完整的音频测试分析系统。

关键字:音频  信号 编辑:神话 引用地址:音频信号及音频分析

上一篇:精密音频放大电路图
下一篇:浅谈歌舞厅音响设计

推荐阅读最新更新时间:2023-10-12 20:30

苹果汽车座椅新专利-发出振动信号或改变座椅形状护乘客周全
据外媒报道,当地时间8月28日,iPhone 制造商-苹果公司提交了一份名为“动态座椅触觉反馈”的专利申请文件,该专利描述了一款未来座椅,可以各种方式与乘客互动。 未来座椅可通过振动信号提醒用户或是可自己折叠,让乘客处于更安全的位置,可能用于提高自动驾驶汽车的安全性,苹果公司一直在“泰坦项目”中测试配备了传感器和摄像头的自动驾驶雷克萨斯(Lexus)SUV。 自动驾驶雷克萨斯SUV的座椅配备了传感器,可触发“触觉反馈系统”,振动以提醒驾驶员注意安全。当汽车转向某个特定方向时,现有系统可能会发出哔哔声,但是该专利提出,如果汽车在行驶过程中偏离车道线,座椅就会振动。 该触觉反馈系统将使用单个或多个中央处理单元操作。简而言之,车载计
[汽车电子]
信号完整性和器件的特性阻抗
在您努力想要稳定板上的各种信号时,信号完整性问题会带来一些麻烦。IBIS 模型是解决这些问题的一种简单方法。您可以利用 IBIS 模型提取出一些重要的变量,用于进行信号完整性计算和寻找 PCB 设计的解决方案。您从 IBIS 模型提取的各种值是信号完整性设计计算不可或缺的组成部分。   当您在您的系统中处理传输线路匹配问题时,您需要了解集成电路和PCB线路的电阻抗和特性。 图 1 显示了一条单端传输线路的结构图。     图 1 连接发射器、传输线路和接收器组件的单端传输线路   就传输线路而言,我们可以从 IC IBIS 模型提取IC的发射器输出阻抗 (Z T , Ω)和接收器输入阻抗
[电源管理]
<font color='red'>信号</font>完整性和器件的特性阻抗
CS8685 双声道2x80W大功率D类音频功放IC解决方案
引言 D类音频功放IC兼具体积小、发热少、集成度高和高清音质等优势,同等电压能够提供比传统AB类音频放大器更高的输出功率,占板面积减少,是家庭影院系统、声霸音箱、低音炮等音频系统消费电子产品的理想选择。近年来,D类音频功放IC因其效率高,符合现代社会的发展趋势,使得应用越来越广泛。 日前,深圳市永阜康科技有限公司大力推广一颗2x80W双声道大功率D类音频功放IC-CS8685H,采用独有的EQB-32(顶部散热焊盘外接散热器)封装,强劲的驱动能力能够保证大功率输出,在26V电源电压驱动2个4欧扬声器、无需任何功率或电流限制、实现大功率高效率的音频输出。充分满足条形音箱、后装汽车音频解决方案、大功率蓝牙音箱的使用需求.
[模拟电子]
CS8685 双声道2x80W大功率D类<font color='red'>音频</font>功放IC解决方案
基于AD9951射频正弦波信号发生器的设计
   1 引言   现代通信技术、雷达技术、电子测量以及一些光电应用领域都要求高精度、高稳定度、高分辨率的射频正弦波信号。有别于传统的模拟射频振荡器方式,直接数字频率合成器DDS(Direct Digital Synthesizer)有着显著的优点:频率稳定度高、频率精度高、易于控制。    2 系统工作原理   直接数字合成技术(DDS)是一种有别于传统模拟正弦信号发生技术的全新数字控制技术,其基本原理如图1所示。   正弦波信号y=sinωt是一个非线性函数。要直接合成一个正弦波信号,首先应将函数y=sinx进行数字量化,然后以x为地址,以y为量化数据,依次存人波形存储器。DDS使用相位累加技术
[模拟电子]
FPGA的DDS调频信号研究与实现
1 引言   直接数字 频率合成器 (DDS)技术,具有频率切换速度快,很容易提高频率分辨率、对硬件要求低、可编程全数字化便于单片集成、有利于降低成本、提高可靠性并便于生产等优点。目前各大 芯片 制造厂商都相继推出采用先进C MOS 工艺生产的高性能和多功能的DDS芯片,专用DDS芯片采用了特定工艺,内部数字信号抖动很小,输出信号的质量高。然而在某些场合,由于专用的DDS芯片的控制方式是固定的,故在工作方式、频率控制等方面与系统的要求差距很大,这时如果用高性能的FPGA器件设计符合自己需要的DDS电路就是一个很好的解决方法,它的可重配置性结构能方便的实现各种复杂的调制功能,具有很好的实用性和灵活性。    2DDS调频
[嵌入式]
FPGA的DDS调频<font color='red'>信号</font>研究与实现
基于FPGA的34位串行编码信号设计与实现
摘要:为实现某专用接口装置的接口功能检测,文中详细地介绍了一种34位串行码的编码方式,并基于FPGA芯片设计了该类型编码的接收、发送电路。重点分析了电路各模块的设计思路。电路采用SOPC模块作为中心控制器,设计简洁、可靠。试验表明:该设计系统运行正常、稳定。 关键词:串行编码;FPGA;电路;设计 新型舰艇或航空系统中所装电子设备数量较多,布局紧凑,易造成系统内部电磁干扰,普通数字信号不能够满足可靠传输的要求,对普通串行码进行调制后传输信息,可使信号的抗干扰性能大大增加。RS232、RS422、RS485以及ARINC429等都是电子设备中常用的串行数据传输标准。 某专用接口装置采用一种点对点的34位串行编码数据传
[嵌入式]
基于FPGA的34位串行编码<font color='red'>信号</font>设计与实现
D类音频前置运算放大器的噪声分析与设计
  D类音频功率放大器中,前置运算放大器是一个比较重要的模块,它位于整个拓扑结构中的前面,完成输入信号源的加工处理,或者实现放大增益的设置,或者实现阻抗变换的目的,使其和后面功率放大级的输入灵敏度相匹配;前置放大器获得并稳定输入音频信号,并确保差动信号,设计时需要尽量减小其等效输入的闪烁噪声及热噪声,降低输出电阻,增加其PSRR、CMRR、SNR、频带宽度、转换效率等参数。   一般来说,双极晶体管的闪烁噪声具有较低的转角频率(闪烁噪声和热噪声的交叉点),低于MOS晶体管的闪烁噪声,在音频等低频的设计系统中,应用双极晶体管的设计有利于降低噪声,然而在混合信号电路的设计中,衬底噪声对双极晶体管就有很大的影响,所以在混合
[安防电子]
D类<font color='red'>音频</font>前置运算放大器的噪声分析与设计
数字信号处理器TMS320VC5402与音频模拟芯片TLC320AD50C的接口设计
    摘要: 介绍了TI公司的信号处理器TMS320VC5402串行口的主要特点,及其和音频模拟接口芯片TLC320AD50C的结构及其使用注意事项。详细讲述了两者的硬件连接及软件实现。     关键词: 数字信号处理器 TMS320CV5402 音频模拟接口芯片 TLC320AD50C 目前发展起来的高速数字信号处理器(DSP)在语音处理系统中得到了广泛应用。TMS320VC5402的TI公司生产的一种性能价格比较高的16位定点DSP。它的指令周期为10ns,具有运算速度快、通用性能、接口连接方便等特点,尤其适合在语音编码和通信中应用。 TLC320AD50C是TI公司生产的∑-Δ型A/D、D/A音
[应用]
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved