基准电源与电源本身及其工艺关系很小,而温度特性稳定,被广泛使用在模拟电路之中。基准电源的温度特性和噪声特性是决定电路精度和性能的重要因素。基准电源的输出电压和(或)电流几乎不受温度和电源电压的影响,是模拟集成电路中不可或缺的关键模块。基准电源根据输出的类型可分为
基准电压源和基准电流源。基准电压源主要有齐纳二极管、隐埋齐纳二极管和带隙基准电压源3种,基准电流源主要是简单基准电流源、阀值电压相关电流源和带隙基准电流源。准电压源和基准电流源两者并不孤立,电压基准可以转换为电流基准,电流基准也可以转换为电压基准。
1 带隙基准电压源的基本原理
带隙基准电压源的基本原理是利用双极型晶体管基区一发射区电压VBE具有的负温度系数,而不同电流密度偏置下的两个基区一发射区的电压差△VBE具有正的温度系数的特性,将这两个电压线性叠加从而获得低温度系数的基准电压源。
利用VBE的负温度系数和△VBE的正温度系数,就可设计出零温度系数的基准电压源。即VBEF=α1VBE+α2(VTln n)。在温室下
,
,令α1=1,αln n≈17.2时,可得到零温度系数的基准为
根据上述理论分析可得到如图1所示的带隙基准电路架构图,其中在鸭管的漏极可得到与绝对温度成正比(PTAT Proportional to Abso-lute Temperature)的电流,先进行理论推导。首先输出基准电压为
M1、M2和M3采用相同的偏置电压,可得到相同的导通电流ID,放大器保证M1和M2的漏极电压相等,得
根据上述分析可知,适当调节晶体管的发射极面积和电阻大小,即可得到温度系数为零的输出基准电压。本文设计的带隙基准电压源正是基于此电路构架图而得到的。
2 带隙基准电压源电路设计
2.1 带隙基准核心电路
带隙基准核心电路采用一阶补偿技术,温度系数一般能达到(10~20)×10-6℃。如图2所示,为本设计的带隙基准电压源的核心电路,图中用PMOS电流源作为偏置电流,由于MOS管的沟道长度调制效应会导致显著的电源电压依赖性。为解决这一问题,可利用共源共栅结构良好的屏蔽特性,电路中的电流源采用共源共栅结构。同时为减小运放失调电压的影响,可采用两个三极管级联的结构。运算放大器用来保证N1和N2两点的电位相等。根据理论分析可知,适当调整晶体管Q1~Q5的发射极面积和电阻R1~R5的电阻值,可产生与温度无关的基准电压VREF。
2.2 运算放大器
图2中运算放大器的实际电路如图3所示,该运放电路是由M11~M17组成的二级运算放大器,其中M11~M15组成的差分放大器是一级放大器,M16和M17组成共源极放大器作为放大器的第二级。差分放大器的输出接在M17的栅极。M11为差分放大器提供电流,M12和M13是一对PMOS差分输入,M14和M15组成的电流镜作为有源负载。电容C1是补偿电容,一般取5pF。
2.3 偏置电路设计
如图4所示,偏置电路为二级放大器的M11和M16两管提供偏置电压Vb。
3 带隙基准电压源的仿真结果
由图5可知,当温度在-25~80℃变化时,输出基准电压在1.249 5~1.250 7 V之间变化,可得其温度系数为
满足设计要求。
由图6可知,当电源电压在3~5 V之间变化时,输出基准电压在1.251~1.208 V之间变化,变化范围在43 mV以内,满足设计要求。
4 结束语
设计了一款带隙基准电压源,在LTspice下画出原理图,产生网表后,在Hspice下仿真,结果表明,温度系数为9.14×10-16℃,电源电压在3~5 V之间变化时,基准电压在43 mV以内变化,满足设计要求。
关键字:隙基准 电压源 仿真
编辑:神话 引用地址:一种带隙基准电压源的设计与仿真
推荐阅读最新更新时间:2023-10-13 10:53
基于R&S矢量源及信号分析仪的无线系统仿真及设计
在民用和军用领域,随着无线通信系统的发展,新器件、新工艺、新产品层出不穷,也使得新的通信系统越来越复杂。为了保证设计的准确性,同时缩短相应的设计周期,需要在设计初期就开始对系统进行相应的仿真和验证,同时对于各个阶段完成的不同模块也要进行分别的仿真和测试。虽然各类大型的EDA软件相继成熟,针对不同的领域都有不同的专业软件,为完成设计提供了强大的支持。但是,由于缺少实际的被测系统,在系统仿真和模块仿真阶段如何进行相应的验证一直是困扰设计人员的主要问题。因此从设计初期开始就有必要引入相应的测试功能,这也是整个无线系统设计的重点和难点。
基于罗德与施瓦茨(R&S)公司的矢量源和 信号分析仪 可以充分利用仿真设计软件的优势
[测试测量]
电源开关设计秘笈30例2——驾驭噪声电源
无噪声电源并非是偶然设计出来的。一种好的电源布局是在设计时最大程度的缩短实验时间。花费数分钟甚至是数小时的时间来仔细查看电源布局,便可以省去数天的故障排查时间。
图1显示的是电源内部一些主要噪声敏感型电路的结构图。将输出电压与一个参考电压进行比较以生成一个误差信号,然后再将该信号与一个斜坡相比较,以生成一个用于驱动功率级的 PWM(脉宽调制)信号。
电源噪声主要来自三个地方:误差放大器输入与输出、参考电压以及斜坡。对这些节点进行精心的电气设计和物理设计有助于最大程度地缩短故障诊断时间。一般而言,噪声会与这些低电平电路电容耦合。一种卓越的设计可以确保这些低电平电路的紧密布局,并远离所有开关波形。接地层也具有屏蔽作用。
[电源管理]
获得大电感量的仿真电感电路及工作原理介绍
电路的功能 数100MH以上的电感,重量重,体积大,不适合现在的使用要求,除特殊用途外,低频LC滤波器基本上都可换成有源滤波器,本电路用正反馈电路对电容器C的频率-阻抗特性进行倒相,形成等效的电感,线圈L的一端被接地。若串联电容器,可实现LCR串联谐振电路,能用于图形均衡器。 电路工作原理 在OP放大器开环增益非常高的情况下,电路图中的等效电感L可用L=C1.R1.R2表示,等效串联电阻RO=R2,等效并联电阻RF=R1。通常RS越小,线圈L的性能越好,所以应选用数100欧以下的电阻,而并联电阻越大越好,令R1》R2,就能获得数100K~100M的电阻。 本电路中,为实现10H的电感,分别取C1=0.1UF,R
[电源管理]
大众汽车集团与Xanadu建立电池材料量子仿真程序
10月18日,大众汽车集团(Volkswagen Group)和加拿大量子技术公司Xanadu建立了一项多年研究计划,以提高用于模拟电池材料的量子算法的性能,从而降低计算成本,并使大众汽车采用量子计算机更快速地开发更安全、更轻、更具成本效益的电池材料。 图片来源:大众
[汽车电子]
西门子推出全新仿真产品以加快无人驾驶汽车的进程
使用TASS的PreScan虚拟传感器图像和Mentor的DRS360平台可使传感器融合与处理的算法开发实现自动化 与Cepton建立合作伙伴关系,致力于实现基于物理学的LiDAR建模 近日, 西门子 在于芝加哥举办的“美国创新日”上推出了针对自动化驾驶系统的突破性解决方案。该解决方案是Simcenter™产品组合的一部分,能最大限度地减少对大量物理原型的制作需求,同时大幅减少为证明自动驾驶汽车安全性所需记录的测试里程数。 根据Rand Corporation所发布的报告,为证明自动驾驶汽车的安全可靠,不会造成死亡和受伤事故,汽车原型所需测试里程数需达到数亿英里,在某些情况下甚至是数千亿英里,需要十多年时间才能积
[嵌入式]
CRH5动车组转向架仿真系统设计与实现
摘 要: 动车组转向架结构的复杂性,使得传统的培训模式已不能满足检修人员短时间内快速掌握检修技能的要求。针对CRH5动车组转向架的结构特点和功能,采用虚拟现实、多媒体和仿真技术,设计实现了动车组转向架虚拟仿真系统,可以清晰地表达转向架的技术信息、结构特点、安装顺序以及工艺要求等。详细介绍了该系统设计实现的关键技术和方法。实际应用表明,该系统不仅为动车组转向架的维护和人员培训提供了一个可视化的多媒体信息平台,也为其他场合的交流提供了直观的沟通方式。
关键词: CRH5动车组;转向架;虚拟现实;仿真;培训;检修;VRML
转向架是高速动车组的核心部件之一,对车辆的运行平稳性及安全性影响很大,在列车运营中需要对
[模拟电子]
宽带放大器的设计与仿真
摘要:采用TI公司的高速运放OPA820ID作为一级放大电路,THS3091D作为末级放大电路,在输出负载50 Ω上实现电压增益≥40 dB,通频带宽为10 Hz~10 MHz,并利用MSP430单片机控制1602液晶显示输出电压峰峰值和有效值,以及模拟电子技术和单片机信号采集处理完成了增益控制和输出显示。整个系统结构合理、设计简洁、性能稳定,可应用于课程设计、实训等教学场合。 关键词;放大器增益;峰值检测;MSP430单片机;液晶显示 本设计实现了一个5 V单电源供电的宽带放大器基本功能。核心部分采用高速运算放大器OPA820ID作为一级放大电路,THS3091D作为末级放大电路,利用DC-DC交换器TPS61087DRC为
[工业控制]
光耦仿真器登场,引脚、电气全兼容!
如今大热的工厂自动化、电机驱动、电网基础设施和电动汽车应用中,电压动辄几百伏,甚至数千伏。如何更好的保护电子设备和操作人员的安全,提高电路的抗干扰能力,同时仍支持信号和/或电源传输,电隔离必不可少。 光耦——作为专有的隔离技术,在长达50年的时间里,一直是隔离设计人员的首选。最早的形式包括初级侧的微型白炽灯泡、作为绝缘或介电层的光学透明塑料、以及次级侧上由所照射光量度进行调制的光敏电阻器。后来使用了LED来跨隔离层(通常是空气间隙或介电强度比空气稍好环氧树脂)传输数字或模拟信息。 典型光耦结构 但随着工业和汽车领域对高可靠性、更长使用寿命和更高信号完整性的需求不断增长,光耦的局限性也渐渐暴露出来。由于绝缘材料容
[模拟电子]