同步整流实现反激变换器设计

最新更新时间:2011-11-09来源: 互联网关键字:同步  整流  反激  变换器 手机看文章 扫描二维码
随时随地手机看文章

摘要:详细分析了同步整流反激变换器的工作原理和该驱动电路的工作原理,并在此基础上设计了100V~375VDC 输入,12V/4A 输出的同步整流反激变换器,工作于电流断续模式,控制芯片选用UC3842,对设计过程进行了详细论述。通过Saber 仿真验证了原理分析的正确性,证明该变换器具有较高的变换效率。

  引言

  反激变换器具有电路简单、输入输出电压隔离、成本低、空间要求少等优点,在小功率开关电源中得到了广泛的应用。但输出电流较大、输出电压较低时,传统的反激变换器,次级整流二极管通态损耗和反向恢复损耗大,效率较低。同步整流技术,采用通态电阻极低的专用功率MOSFET来取代整流二极管。把同步整流技术应用到反激变换器能够很好提高变换器的效率。

  1 同步整流反激变换器原理

  反激变换器次级的整流二极管用同步整流管SR 代替,构成同步整流反激变换器,基本拓扑如图1(a)所示。为实现反激变换器的同步整流,初级MOS 管Q 和次级同步整流管SR 必须按顺序工作,即两管的导通时间不能重叠。当初级MOS 管Q 导通时,SR 关断,变压器存储能量;当初级MOS 管Q 关断时,SR 导通,变压器将存储的能量传送到负载。驱动信号时序如图1(b)所示。在实际电路中,为了避免初级MOS 管Q 和次级同步整流管SR 同时导通,Q 的关断时刻和SR 导通时刻之间应有延迟;同样Q 的导通时刻和SR 的关断时刻之间也应该有延迟。

  

图1 同步整流反激变换器

 

  图1 同步整流反激变换器

  2 同步整流管的驱动

  SR 的驱动是同步整流电路的一个重要问题,需要合理选择。本文采用分立元件构成驱动电路,该驱动电路结构较简单、成本较低,适合宽输入电压范围的变换器,具体驱动电路如图2 所示。SR 的栅极驱动电压取自变换器输出电压,因此使用该驱动电路的同步整流变换器的输出电压需满足SR 栅极驱动电压要求。

  

图2 驱动电路

 

  图2 驱动电路

  该驱动电路的基本工作原理:电流互感器T2 与次级同步整流管SR 串联在同一支路,用来检测SR 的电流。当有电流流过SR 的体二极管,则在电流互感器的二次侧感应出电流,该电流通过R1 转变成电压,当电压值达到并超过晶体管Q1 的发射结正向电压时,Q1 导通,达到二极管VD 导通电压时,VD 导通对其箝位。晶体管Q1 导通后,输出电压通过图腾柱输出电路驱动SR 开通。当SR 中的电流在电流互感器二次侧电阻R1 上的采样电压降低到Q1 的导通阈值以下时,Q1 关断,SR 关断。

图中同步整流管驱动电路各元件的功能说明如下:

  SR 为同步整流管,用来代替整流二极管;

  T2 为电流互感器,用来检测通过SR 的电流,当有电流流过SR 的体二极管,则在电流互感器的二次侧感应出电流;

  R1 用来将互感器二次侧感应出的电流转变成电压,同时R1 的值决定同步整流管开通和关断时电流互感器二次侧电流大小;

  C1 和二极管VD 用来对互感器二次侧的电压进行滤波和箝位;

  偏置电阻R2,下拉电阻R3 和晶体管Q1 构成开关电路,利用Q1 的饱和截止,实现同步整流管SR 的导通和关断;

  Q2 和Q3 构成图腾柱输出电路,提供足够大的电流,使SR 栅源极间电压迅速上升到所需要值,保证SR 能快速开通。同时为SR 关断时提供反向抽取电流回路,加速SR 关断。

  3 同步整流反激变换器的设计

  同步整流反激变换器的电路如图3 所示,控制芯片选用UC3842。设计技术指标如下:

  输入电压Ui:100~375VDC

  输出电压Uo:12V

  输出电流Io:4A

  开关频率fs:100KHz

  最大占空比Dmax:0.45

  效率:η>80%

  工作方式:断续模式

  

图3 同步整流反激变换器电路

 

  图3 同步整流反激变换器电路

  3.1 启动电路设计

  芯片 UC3842 工作的开启电压为16V,在芯片开启之前,芯片消耗的电流在1mA 以内。

  正常工作后,欠压锁定电压为10V,上限为34V,芯片消耗电流约为15mA。启动时由输入直流电压通过启动电阻R4 向电容C2 充电,芯片消耗电流在1mA 以内,电容C2 上电压不断上升,当芯片7 脚上电压升至16V 时UC3842 开始工作,芯片消耗电流约为15mA,电容C2 上电压下降,辅助绕组上开始有电压,电容C3 上电压逐渐升高,当电容C3 上电压高于电容C2 上电压,二极管VD2 导通,由辅助绕组供电。

  辅助绕组供电电压取15V,电压纹波要求不高,滤波电容C3 取47μF。为了芯片可靠启动,电容C2 取100μF,电阻R4 取68KΩ,在输入电压最小时,通过启动电阻R4,能提供1.2mA的启动电流。

3.2 变压器设计

  反激变换器工作于DCM,但随着输入电压减小或负载电流增大,占空比变大,可能会从DCM 变成CCM。因此为保证反激变换器在整个输入电压和负载电流变化范围内都工作在DCM 且占空比不超过要求的最大值,设计变压器满足反激变换器在输入电压最小Ui =100V、负载电流Io =4A 和效率η =80%时工作在电流临界连续模式,且占空比不超过要求的最大值 Dmax =0.45。选用EI 型铁氧体磁芯,其型号为EI30,为减少漏感,采用三明治绕法绕制变压器。初级电感为146.85μH,变压器的匝比为:

  

 

  初级绕组 N p选用直径为0.56mm 的铜线单股绕制,次级绕组 Ns 选用直径为0.56mm 的铜线3 股并绕,辅助绕组 Na 选用直径为0.56mm 的铜线单股绕制。

  3.3 RCD 箝位电路设计

  当开关管 Q 关闭时,初级电感 Lp 中的能量将转移到次级输出,但漏感Ll 中的能量将不能传递到次级,转移到箝位电路的电容Cc ,然后这部分能量被箝位电阻 R c消耗。电容c C上的电压在开关管关断的一瞬间冲上去,然后一直处于放电状态。电容 C c的值应取得足够大以保证其在吸收漏感能量和释放能量时自身两端电压uc( t )纹波足够小。因此电容Cc 两端电压uc( t )为基本为恒定值Uc 。同时电容 Cc 上的电压不能低于次级到初级的反射电压Uo × (Np / Ns ),否则开关管关断期间,二极管导通,RCD 箝位电路将成为该变换器的一路负载。因此开关管承受的尖峰电压被箝位为:

  

 

  输入电压最大值为 Uimax ,开关管的最大耐压值为 U dsmax,考虑80%的降额使用系数,则电容 C c两端电压Uc 的大小可由式(1)确定。

  

 

  漏感存储的能量完全被电阻Rc 消耗,则电阻 Rc 的大小可由式(2)确定。

  

 

  为保证电容 Cc 两端电压纹波足够小,需RcC c 》 Ts ,取10 倍关系,则电容 C c的大小由式(3)确定。

  

 

  选用美国Fairchild 公司生产的FQPF5N60 场效应管,该管允许通过的最大电流为5A,最大耐压值为600V;漏感取变压器初级电感的3%,4.5μH。RCD 箝位电路中,取 R c为6KΩ,Cc 为0.015μF, VDc 采用快恢复二极管FR107。

  3.4 电流检测电路设计

  初级电感电流通过插入一个与开关Q的源极串联的以地为参考的取样电阻RS转换成电压。此电压由电流取样输入端(3 脚)监视并与来自误差放大器的输出电平比较。在正常的工作条件下,初级电感电流峰值由误差放大器的输出 U e控制,满足:

  

 

  电流检测比较器反向输入端箝位电压为1V,因此初级电感电流峰值限制为:

  

 

  取RS 为0.33Ω,在RS 和3 脚之间,常用R、C 组成一小的滤波器,用于抑制功率管开通时产生的电流尖峰,其时间常数近似等于电流尖峰持续时间(通常为几百纳秒),取R为1KΩ,C 为470pF。

关键字:同步  整流  反激  变换器 编辑:神话 引用地址:同步整流实现反激变换器设计

上一篇:基于DP标准发射端扩频时钟发生器电路设计
下一篇:Buddy算法的μC/OSII高可靠内存管理方案

推荐阅读最新更新时间:2023-10-12 20:32

VGA视频与LED显示屏的同步显示设计
显示屏从通讯控制方式上分为同步和异步两种,同步控制方式是上位机与屏体之间实时进行通讯。异步控制方式是上位机与屏体之间独立运行,但需要上位机将显示信息编辑并发送到显示屏体。本文给出了基于同步显示上位机信息显示设计。 一、系统总体设计 系统硬件分为三个部分。首先,通过显卡显示信息实时提取电路从显卡中实时提取出VGA单色数字视频信号、像素时钟、行同步、帧同步,经过处理后由输出介质传输过去;第二部分是CRT视频信号到LED显示信号转换电路,该电路把传输介质传送过来的图像信号经选择、存贮、读取、分配,转换成为对应于LED点阵屏的显示信号;第三部分是LED驱动板,它接收转换后的LED显示信号,并分配给LED点阵屏对应的像素点,驱动LED显
[嵌入式]
TT Electronics的耦合电感器完美适合汽车DC/DC变换器应用
TT Electronics宣布推出用于DC/DC变换器应用的HA78D系列耦合电感器,不仅具有较高温度等级,并且通过了AECQ200认证,提供“支持汽车应用” (automotive ready) 的解决方案,帮助汽车制造商开发新一代机动车。 HA78D系列屏蔽SDM电感器专为包括反激、多输出降压、SEPIC (注)和Zeta应用在内的多种DC/DC变换器配置设计。它们的漏电感较高,理想用于SEPIC应用,其中通过降低循环电流,使得松耦合绕组改善了SEPIC效率,与单独的电感器相比,波纹电流减少两倍。 机动车中的电子应用超过80种,其中每种都采用ECU,而每个ECU都需要DC/DC变换器。2015年,汽车电子占汽车
[汽车电子]
TT Electronics的耦合电感器完美适合汽车DC/DC<font color='red'>变换器</font>应用
基于软开关双向DC/DC变换模块设计方案
新型软开关双向DC/DC变换器结构框图如图1所示,该变换器结构的前级是270V直流母线,本变换器由升压输出滤波电路、PS-FB-ZVS-PWM变换器、降压输出滤波环节、UC3875控制电路、驱动电路、反馈检测电路、辅助电源电路、保护电路、蓄电池充电控制电路、监控电路等部分组成。 图1 PS-FB-ZYX-PWM双向DC/DC变换器结构图 (1)升压电路。   升压电路主电路采用推挽电路设计,其电路如图2所示。   图2 升压电路主电路   推挽式变换器电路由两个正激式变换器电路组成,它们工作时相位相反。在每个周期里,两个晶体管交替导通和截止,在各自导通的半个周期内,分别把能量传递给
[电源管理]
如何在DS26303 LIU启用ITU-T G.703 2048kHz同步接口
   引言   DS26303 E1/T1/J1八通道线路接口单元(LIU)一个鲜为人知的功能是:能够发射、接收符合国际电信联盟ITU-T建议G.703 (2001年11月)第13条规定的2048kHz同步接口(T12)信号。本应用笔记主要介绍如何对DS26303进行正确编程,启用2048kHz同步接口模式,以支持综合定时供给系统(BITS)或定时供给单元(SSU)等时钟分配应用。应该注意的是,目前有两款DS26303产品可供使用:DS26303-120和DS26303-75。二者之间唯一的区别在于默认的E1线路阻抗设置。必须注意这一特点,确保在设计阶段和生产阶段使用相同型号的器件。    DS26303设置工作在2048
[嵌入式]
开关式DC/DC变换器的种类
  开关式DC/DC变换器按结构可分为以下三类。   ①电感式DC/DC变换器,如图(a)所示:   ②无调整电容式电荷泵,如图(b)所不;   ③可调整电容式电荷泵,如图(c)所不。   图  三种典型的DC/DC变换器框图   三种电路的工作过程均为:首先储存能量,然后以受控方式释放能量,以获得所需的输出电压。电感式DC/DC变换器采用电感器来储存能量,而电容式电荷泵采用电容器来储存能量。   无调整电容式电荷泵缺少调整电路,而可调整电容式电荷泵在基本电荷泵的后端增加了线性调整器或电荷泵调制器。线性调整的输出噪声最低,并可以在更低的效率情况下提供更好的性能。因电荷泵调制器没有串联传输晶体管,只是控制开关管的导通和截止,
[电源管理]
开关式DC/DC<font color='red'>变换器</font>的种类
双输出SEPIC变换器
双输出SEPIC(Single-Ended Primary Inductance Converter- 单端初级电感变换器)变换器电路示于图1,在此电路中采用Linear公司降压变换器 LT1767。 现在,通信装置的尺寸正在不断地缩小,而数据率继续提高。这使得在敏感信号电路附近建造一个小型、有效的开关电源增加了困难。LT1767就是针对此问题而设计的。1.25MHz开关频率是大于很多系统的带宽。 若需要,Sync引脚可用于进一步提高工作频率到最高2MHZ,使开关噪声不进入任何特别敏感的频段。高开关频率可降低输入和输出滤波元件的尺寸并且可采用片电感,从而降低了整个系统的成本。LT1769主要特性还包括:2.7V~25V宽工
[电源管理]
一种新型ZCS-PWM Buck变换器研究
1 引 言 与功率场效应管(MOSFET)相比,绝缘栅双极晶体管(IGBT)具有更高的耐压值、更大的能量密度和较低的开通损耗,因此己广泛用于高压、大功率场合。然而,IGBT的开关速度较慢,而且关断时还存在电流拖尾现象,因而会导致较大的关断损耗。解决这两个问题的有效措施是实现IGBT的零电流开关(ZCS)。为此,近几年已陆续提出了多种ZCS脉宽调制(Pulse Width Modulated,简称PWM)技术方案 。例如,文献 虽能实现所有有源开关器件的ZCS,但主开关管的电流应力很大,它将显著增加导通损耗。这一问题在文献 中得到解决,但辅助开关管的电流应力也很大。而且由于两个谐振电感分别与主开关管、辅助开关管串联,所以损耗较大,且
[电源管理]
一种新型ZCS-PWM Buck<font color='red'>变换器</font>研究
单相桥式半控整流电路图
单相桥式半控整流 电路 图, 晶闸管共阴极接法电路, 有续流二极管的单相半控整流电路及其L足免大时的工作波开
[电源管理]
单相桥式半控<font color='red'>整流</font>电路图
小广播
热门活动
换一批
更多
最新模拟电子文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved