Buddy算法的μC/OSII高可靠内存管理方案

最新更新时间:2011-11-09来源: 互联网关键字:Buddy  μC/OSII  内存管理 手机看文章 扫描二维码
随时随地手机看文章
1 内存管理概述

  目前嵌入式系统中常用的内存管理策略主要有两种--静态内存分配和动态内存分配。

  静态内存分配: 编译或链接时将所需内存分配好,程序运行起来后所分配的内存不释放。对于实时性和可靠性要求极高的系统,不允许延迟或者分配失效,必须采用静态内存分配的方式。

  动态内存分配: 根据程序执行过程中所需内存的大小而动态分配内存的策略。此方案按需分配内存,避免了静态分配中的内存浪费,灵活性比较强,给程序的实现带来了很大方便。缺点是容易造成内存碎片,且容易造成程序响应不及时等问题。

  嵌入式操作系统对内存的分配还有以下几点要求:

  ① 可靠性。内存分配的请求必须得到满足,如果分配失败可能会带来灾难性的后果。比如,航天飞机的嵌入式操作系统若发生内存分配失效,损失是不可估量的。

  ② 快速性。嵌入式系统对实时性的保证,要求简单、快速地分配内存。

  ③ 高效性。嵌入式系统中内存是一种有限、昂贵的资源,内存分配要尽可能地减少浪费。

  μC/OSII作为一种典型的嵌入式操作系统,其内存管理同样要满足以上3点要求,下面简单介绍μC/OSII的内存管理策略,并分析其不足之处。

  2 μC/OSII动态内存管理方案及不足

  2.1 μC/OSII内存管理方案简介

  μC/OS?II内存管理模块主要由一个数据结构体和5个函数组成:

  ◆ 内存控制块数据结构OS_MEM;

  ◆ 内存分区创建函数OSMemCreate(void *addr, INT32U nblks, INT32U blksize, INT8U *err);

  ◆ 内存块分配函数OSMemGet(OS_MEM *pmem , INT8U *err);

  ◆ 内存块释放函数OSMemPut(OS_MEM *pmem , void *pblk);

  ◆ 内存分区状态查询函数OSMemQuery(OS_MEM *pmem, OS_MEM_DATA *p_mem_data);

  ◆ 内存控制块链表初始化函数OSMemInit(void)。

  μC/OSII用一个内存控制块(OS_MEM)来管理内存分区,主要通过以下4步来管理:

  ① 内存控制块链表初始化函数OSMemInit()负责创建空内存控制块结构的链表,链表长度由内核OS_CFG.H文件中定义的OS_MAX_MEM_PART宏确定。

  ② 内存块创建函数OSMemCreate()先从空内存控制块结构链表上获取一个空的内存控制根块结构,根据用户需要内存块的大小来创建分区。一个分区中含有相同大小的内存块,各内存块也是通过链表链接起来,而不同分区中的内存块大小一般不同,如图1所示的Partition # 1和Partition # 2中内存块的大小是不同的。

  

 

  图1 μC/OSII通过内存控制块管理内存

  ③ 内存块分配函数OSMemGet()通过从内存控制块链表中找到能够满足自己内存块需要的内存控制块,然后从这个内存控制块指向的分区链表首部得到自己需要的内存块。

  ④ 内存块释放函数OSMemPut()负责回收内存块。当应用程序不再使用某一个内存块时,必须及时把它释放,并放回到相应的内存分区中。

2.2 μC/OSII内存管理方案的不足之处

  如前所述,μC/OSII的内存管理方案简短精炼,仅百余行代码,5个函数就能胜任。然而考虑到第1节提到的嵌入式系统对内存管理策略的3个要求,μC/OSII的内存管理策略存在以下不足之处:

  ① 原μC/OSII内存管理方案可靠性不高。因为原方案中各内存分区之间是孤立的,没有联系。一个内存分区上的内存块用完时,不能利用其他分区上的内存块,而只是简单地报错,从而使系统可靠性大大降低。在内存块大小及需求量不确定的场合,如果经常发生内存申请得不到满足的情况,是嵌入式系统所不能容忍的。

  ② 原μC/OSII内存管理方案中内存分配不够灵活。举个例子来说,一个应用程序需要大小为1 KB、512 B、256 B三种内存块,原方案有两种解决方案,一是创建一个内存块大小为1 KB的内存分区,内存块数目至少为3个;二是创建3个内存分区,内存块大小分别为1 KB、512 B、256 B。方案一创建了较少分区,性能有保证,但造成内存资源的浪费;方案二虽然没有浪费内存,但却调用3次OS_MemCreate()函数,效率较低。

  3 Buddy算法简介

  Buddy算法是内存管理的经典算法,目的是为了解决内存的外碎片问题,以及提高内存管理的可靠性。Buddy算法在Linux内核内存管理模块得到成功的应用。

  如图2 所示,Buddy算法将所有空闲页框分组为10个块链表,每个块链表的每个块元素分别包含1、2、4、8、16、32、64、128、256、512个连续的页框,每个块的第一个页框的物理地址是该块大小的整数倍。例如,大小为4个页框的块,其起始地址是4×212(一个页框的大小为4K,4个页框的大小为4×4K,1K=1024=210,4K=212)的倍数。

  

 

  图2 Buddy算法简介

  假设要请求一个128个页框的块,算法先检查128个页框的链表是否有空闲块,如果没有则查256个页框的链表,有则将256个页框的块分裂为两份,一份使用,一份插入128个页框的链表。如果还没有,就查512个页框的链表,有的话就分裂为128、128、256,一个128使用,剩余两个插入对应链表。如果在512还没查到,则返回出错信号。用这种方法来分配页框,由Linux内核的稳定性可知其可靠性。

  回收过程相反,内核试图把大小为b的空闲伙伴合并为一个大小为2b的单独块,满足以下条件的两个块称为伙伴: 两个块具有相同的大小,记做b;它们的物理地址是连续的;第一个块的第一个页框的物理地址是2b×212的倍数。该算法迭代,如果成功合并所释放的块,会试图合并2b的块来形成更大的块。在本方案中,只要满足前两个条件就足够了。

  4 μC/OSII内存管理改进方案

  4.1 改进方案思路

  ① 修改内存控制块的结构OS_MEM,去掉OS_MemAddr、OS_MemNFree成员,添加一个内存块链表尾指针OSMemBlkTail,所以OS_MEM结构还含有4个成员:OSMemFreeList、OSMemBlkSize、OSMemNBlks、OSMemBlkTail。改进后的内存控制块结构如图3所示。

  

 

  图3 改进方案中的内存管理组织结构

  ② 首先初始化一个内存控制块结构数组struct OS_MEM [],其下标是内存块规模的对数,引入结构数组的目的是在申请内存块时能够快速定位,起到索引的作用。而内存块的实际大小为内存块规模与内存块粒度的乘积。然后将内存块按内存块规模从小到大挂到不同结构数组指向的链表上,并且保证初始化后同一链表上的内存块地址不连续。在申请内存块通过内存控制结构数组的下标快速定位到内存块链表,查看内存块控制结构字段中OSMemFreeList成员指针是否为空。若不为空,则从表头取一个内存块,并返回该内存块的地址;否则向后搜索数组,看是否有空闲内存块。若有则将该内存块一分为二,低地址的那块分配给申请者,高地址的那块则挂到前一个结构数组的表头,以备其他申请者申请。同样,释放内存块时也是通过结构数组快速定位到具体结构数组,然后检查该结构数组内存块链表中是否有和要释放的内存块地址连续的内存块。若有,则合并两内存块并挂到后一个结构数组,并检查地址是否连续,直至没有为止;若无,则将该内存块挂到该内存块链表的表尾。改进后的内存管理组织结构如图3所示。

   4.2 具体改进措施

  ① 改进函数OS_MemInit(void)。此函数原来是初始化空闲内存控制块链表,改进后此函数用于初始化OS_MEM结构数组即可,根据OS_CFG.H文件中宏OS_MAX_MEM_PART来决定数组元素个数。

  ② 改进函数OSMemCreate(void *addr, INT32U nblks, INT32U granularity , INT8U *err)。根据Buddy的规则横向创建内存块,每创建一个内存块就链到相应的结构体数组上,如图3的Create Direction所示,这样能保证每个结构数组上的相同大小的内存块地址不连续,从而避免了所有内存块合并的现象。创建出来的内存块组织结构如图3所示。

  ③ 改进函数OSMemGet(INT32U size, INT32U granularity, INT8U *err)。因为结构体数组名是在OS_CFG.H文件中宏定义的,所以本函数的参数只包括需求的内存块大小及内存块粒度即可。用内存块大小除以内存块粒度,首先判断所得值是否为2的幂次,若是直接取对数即得结构数组的下标;若不是则取对数后向上取整。得到指定数组元素后若有内存块,取下一内存块然后指针下移,若无内存块则继续搜索下一个结构数组。若该数组有空闲内存块则取将其平分为两块,一块分配出去,一块挂到前面结构数组链表。这样一直搜索到最后一个结构数组,若一直无内存块,则报错返回。

  ④ 改进函数OSMemPut(INT32U size, INT32U granularity)。如何取得结构数组下标值同OSMemGet()函数。在找到所要回收的结构数组后,判断该数组内存块链表上是否有与要回收的内存块连续的地址。若有合并且挂到下一内存块结构数组内存块链表,这样一直到最后一个结构数组,目的是为了保证有更大的内存块可满足应用程序的申请,提高了内存管理的可靠性。

  在改进以上函数的基础上,还可以在申请内存块之前有选择地使用OSMemQuery()查询内存中是否有满足需要的内存块。如果没有则作好相应的规避措施,进一步提高内存管理的可靠性,使系统更稳定。

  5 实验结果及性能分析

  针对改进前后μC/OSII内存管理策略的特点,设计一组具有代表性的测试用例来分析μC/OSII系统在改进前后内存管理的可靠性和灵活性。实验环境为ARM Develop Suit V1. 2及三星公司S3C2440微控制器,由于S3C2440片内包含MMU模块,所以需要将协处理器CP15的C1寄存器0位置0,以禁用MMU功能。

  假设两种方案内存初始化都创建了5个分区,每个分区中所含内存块为10个,且这5个内存分区中的内存块大小依次为16 B、32 B、64 B、128 B、256 B。原方案创建分区时要调用5次OSMemCreate()函数,而改进方案只需调用一次。表1是申请内存块大小与两种方案可以满足的次数之间的关系。

  表1 申请内存块大小与两种方案可以满足的次数比较

  

 

  由表1的数据及图4的对比曲线可看出,改进方案与原方案在可用内存完全相同的情况下,使内存的利用率大大提高。因为可靠性与可满足次数正相关,而可满足次数与曲线与坐标轴围成的面积成正比,所以该面积与可靠性正相关。新方案曲线所围图形面积为12960, 而原方案曲线所围成的图形面积为2400。所以新方案的可靠性将比原来方案提高大约4倍,而且申请内存块越小,可满足次数越多,提高了内存分配的灵活性。

  

 

  图4 两种方案可满足次数对比曲线

  6 结语

  本文的创新之处在于针对μC/OSII在内存管理可靠性不高、内存块分配不够灵活的特点,借鉴Buddy算法思想,对其进行改进,形成了一种基于Buddy算法思想、高可靠性的内存管理策略。实验表明,新方案一次创建内存区,即可满足内存块大小需求不均匀的场合,既提高内存分配的灵活性,避免了大量内碎片的产生,又增强了内存分配的可靠性。

关键字:Buddy  μC/OSII  内存管理 编辑:神话 引用地址:Buddy算法的μC/OSII高可靠内存管理方案

上一篇:同步整流实现反激变换器设计
下一篇:显示技术—灵巧、清晰、逼真

推荐阅读最新更新时间:2023-10-12 20:32

谷歌Pixel 3被曝存内存管理问题
        一些早期的Google Pixel 3用户反映他们的设备存在一些问题。第一个问题已似乎仅限于更大的Pixel 3 XL,并且是一个熟悉的问题:扬声器(主要是底部扬声器)声音存在嗡嗡和失真情况。   很难用语言来描述扬声器存在的问题,但是用户称手机在某些频率上有嗡嗡声,可以通过某些可以在特定频率上播放声音或观看带有语音旁白的视频的应用程序注意到这一点。   还有用户反映手机在低音量和高音量时的声音失真问题。另外,谷歌Pixel 3 XL的底部扬声器似乎比顶部扬声器声音大得多,但这并不是只是谷歌手机存在的问题,一般手机的底部扬声器声音均比顶部大。谷歌已经回应了这个问题,称是故意这样设计的。   另一个困
[手机便携]
嵌入式系统内存管理方案研究
摘要:嵌入式系统的内存管理机制必须满足实时性和可靠性的要求。本文以开源的的操作系统RTEMS为例,介绍嵌入式系统中内存管理的要求、存在的问题以及解决的策略。 关键词:嵌入式系统 内存管理 静态分配 动态分配 引言 内存管理机制是嵌入式系统研究中的一个重点和难点的问题,它必须满足以下几个特性: ①实时性。从实时性的角度出发,要求内存分配过程要尽可能地快。因此,在嵌入式系统中,不可能采用通用操作系统的一些复杂而完善的内存分配策略,一般没有段页式的虚存管理机制;而是采用简单、快速的内存分配方案,其分配方案也因程序对实时性的要求而异。例如,VxWorks系统采用简单的“首次适应,立即聚合”方法;VRTX中采用多个固定尺寸存储块的
[嵌入式]
Linux内存管理学习1 —— head.S中的段页表的建立
平台 TQ2440 Qemu+vexpress-ca9 Linux-4.10.17 概述   在Linux自解压完毕后,开始执行arch/arm/kernel/head.S,然后跳转到init/main.c中的start_kernel开始执行。在head.S中为了便利Linux内核启动,会建立临时的段页表。这里以TQ2440和vexpress-ca9为例,其中TQ2440使用的SoC是S3C2440,ARM核心是ARM920T,指令集是ARMv4T,而vexpress-ca9是ARM核心是Cortex-A9,指令集是ARMv7。为了便于理解,在分析的时候主要以2440为主,只是顺便说一下ARMv7,因为这两个大同小异。 下面
[单片机]
Linux<font color='red'>内存管理</font>学习1 —— head.S中的段页表的建立
ARM 系列 -- FS2410 开发板上启用 MMU 实现虚拟内存管理
一、背景 FS2410 开发板上的 ARM 核心为 ARM920T, ARM920T 代表着什么呢? 其实ARM920T = ARM9 core + MMU + Cache,也就是说 ARM920T 为实现虚拟内存管理提供了硬件条件,这个硬件条件就是 MMU -- 内存管理单元。前面的实验我们程序里的地址都是直接对应物理地址,也就是说虚拟地址等同于物理地址,而今借助 MMU 我们可以实现虚拟内存管理,程序里面的地址不再被直接送到地址总线,而是先通过 MMU,由 MMU 来实现虚地址到物理地址的映射。这有什么意义?想象有这么两个程序,它们有相同的虚拟地址,但由于运行时其虚地址分别被映射到不同的物理地址,所以它们各行其道、和平共处,
[单片机]
ARM 系列 -- FS2410 开发板上启用 MMU 实现虚拟<font color='red'>内存管理</font>
基于ARM7+μC/OSII的数据采集系统设计
摘 要:介绍了一种用ARM7+μC/OSII设计的数据采集系统。给出了系统原理框图,实现了将嵌入式操作系统植入该系统中,列出了软件设计的要点。   关键词:ARM7;μC/OSII;嵌入式操作系统   在一些工业现场中,设备长时间运行容易出现故障,为了监控这些设备,通常利用数据采集装置采集他们运行时的数据并送给PC机,通过运行在PC机上的特定软件对这些数据进行分析,以此判断当前运行设备的状况,进而采取相应措施。当前常用的数据采集装置,在其系统软件设计中,多采用单任务顺序机制。这样就存在系统安全性差的问题。这对于稳定性、实时性要求很高的数据采集装置来说是不允许的,因此有必要引入嵌入式操作系统。笔者以μC/OSII为操作系统平台,基于
[嵌入式]
基于LPC2119和μC/OSII的CAN中继器设计
  引 言   CAN总线的直接通信距离只有10 km左右,而且由于收发器驱动能力的限制,总线上最多只能挂110个节点,给系统组网带来一定的困难。CAN中继器就是为了解决这个问题而设计的。对CAN中继器初始化参数进行设置,可以在不同的网段内采用不同的通信速率,还可以对报文进行过滤,减轻总线负担。   1 CAN中继器的硬件设计   1.1 微控制器LPC2119简介   CAN中继器是以ARM微控制器LPC2119为核心的软硬件系统。LPC2119是Philips公司生产的一款基于支持实时仿真和跟踪的16/32位ARM7TDMISMCU,带有128 KB嵌入的高速Flash存储器。独特的加速结构使32位代码能够在最大时钟速率下
[单片机]
基于LPC2119和μ<font color='red'>C</font>/<font color='red'>OSII</font>的CAN中继器设计
OK6410A 开发板 (八) 40 linux-5.11 OK6410A buddy 的 alloc 和 free
第三阶段建立的是 buddy buddy 的使用期限 mm_init- mem_init返回 - 无结束点 buddy 管理的内存大小 buddy 管理的内存 是 memblock 决定的 属于 memblock.memory 中 但不包括 memblock.reserved 的部分 memblock 可以通过 memblock_alloc或memblock_reserve 来 预留内存 buddy 的使用方法 alloc alloc_pages/alloc_page // 返回的是 struct page get_zeroed_page // 返回的是虚拟地址 __get_free_pages/__get_f
[单片机]
STM32单片机内存管理器代码
本代码适用于无操作系统的STM32单片机开发,功能强大。 可申请到地址空间连续的不同大小的内存空间,且用户接口简单,使用方便。 memory.h: memory.c:
[单片机]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved