运算放大器的输入过压保护和输出相位反转

最新更新时间:2012-02-11来源: 互联网关键字:运算  放大器  相位反转 手机看文章 扫描二维码
随时随地手机看文章

运算放大器输出电压相位反转

  超过输入共模电压(CM)范围时,某些运算放大器会发生输出电压相位反转问题。其原因通常是运算放大器的一个内部级不再具有足够的偏置电压而关闭,导致输出电压摆动到相反电源轨,直到输入重新回到共模范围内为止。图1所示为电压跟随器的输出相位反转情况。注意,输入可能仍然在电源电压轨内,只不过高于或低于规定的共模限值之一。这通常发生在负范围,最常发生相位反转的是JFET和/或BiFET放大器,但某些双极性单电源放大器也有可能发生。

  

图1:电压跟随器的输出电压相位反转

 

  图1:电压跟随器的输出电压相位反转

  相位反转通常只是暂时现象,但如果运算放大器在伺服环路内,相位反转可能会引起灾难性后果。

  运算放大器配置为单位增益电压跟随器时,最有可能发生相位反转。在反相模式下,相位反转不是问题,因为两个输入均恒定不变,并且处于地电位(某些单电源应用中则处于中间电源电压)。

  大多数现代运算放大器都会使用电路设计技术来防止相位反转。如果运算放大器能够避免相位反转,其数据手册的"主要特性"部分一般会说明这一点,但"技术规格"部分不一定会说明。

  对于"轨到轨"输入运算放大器,输入共模电压包括电源轨,因此,只要输入电压不超过电源轨,运算放大器就不应发生相位反转。

  图2显示了AD8625(四通道)、AD8626(双通道)和AD8627(单通道)运算放大器系列的"主要特性"和绝对最大值规格。这些放大器具有JFET输入,采用+5 V单电源供电时,输入共模电压范围为0 V至+3 V(最大值)。"无相位反转"特性意味着:在+3 V至+5 V的共模区间,输出不会发生相位反转。

  

图2:AD8625/AD8626/AD8627运算放大器的

 

  图2:AD8625/AD8626/AD8627运算放大器的"主要特性"和绝对最大值规格

  某些运算放大器可能仅在输入超过电源轨时出现输出电压相位反转现象。然而,这种情况违反了输入电压的绝对最大值要求,应当避免。如果输入过压情况可能发生,则应增加适当的保护电路。多数情况下,这种保护电路也能起到防止输出电压相位反转的作用,如下文所述。

  输入过压保护和输出相位反转保护电路

  绝对最大额定值是IC运算放大器的电压、电流和温度限值,一旦超出该值,运算放大器就会受损。通常对输入引脚施加过大的电压会破坏或损毁运算放大器。过压状况可以分为两类:过压和静电放电(ESD)。

  ESD电压通常高达数千伏。大多数人都有被静电电击的体验。在尼龙地毯上拖着脚走,特别是在干燥环境下,并触摸金属门把手,就有可能被电到,火花从指尖飞出。CMOS电路特别容易因ESD损坏,双极性电路同样可能受损。多数运算放大器的输入引脚内置ESD保护二极管,以便能够在PC板装配阶段处理IC.为使电容和泄漏最小,这些二极管一般很小,不是用来应付数mA以上的持续输入电流。

  只要运算放大器的输入共模电压超出其电源范围,即使电源已关闭,运算放大器也可能受损,.因此,几乎所有运算放大器的绝对最大输入额定值都将最大输入电压限制在如下电平:正负电源电压加上大约0.3 V(即+VS + 0.3 V或–VS – 0.3 V)。即使规定绝对最大输入电压等于电源电压(如图2所示的情况),这一经验法则也仍然适用。

  虽然可能存在一些例外,但务必注意:当发生超出电源轨0.3 V以上的过压状况时,多数IC运算放大器需要输入保护。

  导致故障的原因并非过压本身,而是过压引起的电流会流入输入引脚。如果输入电流不超过5 mA(经验法则),则不会造成严重破坏。然而,如果输入持续处于过应力状况,偏置电流和失调电压等参数可能会发生变化。因此,过压虽然不一定会损毁运算放大器,但应极力避免。

  过压保护措施一般包括在输入引脚与电源之间放置外部二极管,以及增加限流电阻(参见图3)。

  二极管通常是肖特基二极管,因为其正向电压较低(通常为300 mV,硅二极管则为700 mV)。

  应用这些保护器件时必须谨慎。某些二极管可能有严重泄漏,额外的漏电流最终会变成运算放大器的偏置电流。某些二极管可能还有相当大的电容,这可能会限制频率响应,对高速放大器的影响尤为严重。此外,外加限流电阻RLIMIT会增加噪声。

  

图3:使用肖特基箝位二极管和限流电阻的通用运放过压保护网络

 

  图3:使用肖特基箝位二极管和限流电阻的通用运放过压保护网络

  除非数据手册另有说明,运算放大器的输入故障电流应等于或小于5 mA以免受损。这是一个保守的经验法则,基于典型运放输入的金属走线宽度。更高的电流会引起"金属迁移",这是一种累积效应,如果持续发生的话,最终会导致走线开路。如果存在迁移现象,故障可能需要经过很长时间发生多次过压才会显现,这种故障非常难以发现。因此,即使一个放大器似乎能够短时间承受远高于5 mA的过压电流,也必须将最大电流限制在5 mA(或以下),以确保长期可靠性。

  某些运算放大器,如OP27等,内置保护二极管,但仍然需要限流。如果运算放大器具有保护二极管,它通常会规定最大差分输入电流。原理示意图上也应显示该保护电路。

  某些运算放大器的输入还具有背靠背二极管,这不是用于输入过压保护,而是限制差分电压。如果存在这种二极管,差分输入电压将有±700 mV的绝对最大额定值。

  图3所示电路是一个通用运算放大器共模保护电路。只要元件选择得当,大量运算放大器的输入都能获得有效保护。注意:运算放大器可能还有连接到电源的内部保护二极管(如图所示),当正向电压超出或低于相应电源轨大约0.6 V时,该二极管就会导通。但在这种情况下,外部肖特基二极管与内部二极管并联,因而内部单元永远不会达到其阈值。将故障电流转移到外部可以消除潜在的应力,从而保护运算放大器。

  外部二极管还能带来其它好处,有些可能不太明显。例如,如果允许故障电流流入运算放大器,则必须选择适当的RLIMIT,使得在最差情况的VIN下,最大电流不超过5 mA.这一要求可能导致RLIMIT值相当大,相关的噪声和失调电压增加可能是设计无法接受的。举例来说,为了预防100 V的VIN,根据5 mA要求,RLIMIT必须大于或等于20 k.然而,如果有外部肖特基箝位二极管,则RLIMIT可以由最大容许的D1-D2电流决定,它可以大于5 mA.不过这里应小心,对于非常高的电流,肖特基二极管压降可能超过0.6 V,从而激活内部运放二极管。

  为使失调电压和噪声误差最小,必须使RLIMIT的值尽可能低。RLIMIT与运算放大器输入端串联,产生一个与偏置电流成比例的压降。如果不校正,此电压将表现为电路失调电压增加。因此,对于偏置电流中等且大致相等的运算放大器(大部分是双极性类型),补偿电阻RFB用于平衡直流失调,使该误差最小。对于低偏置电流运算放大器(Ib ≤10 nA或FET型),有可能不需要RFB.为使RFB相关噪声最小,应利用一个电容CF将其旁路。

消除输出相位反转

  许多情况下,增加合适的RLIMIT电阻可以防止输出相位反转。然而,许多运算放大器制造商未必始终能够提供适合防止输出相位反转的RLIMIT电阻值。不过,可以通过一组测试以经验来确定该值。通常,防止相位反转的RLIMIT电阻值也会通过输入共模箝位二极管来安全地限制故障电流。如果不确定,可以从1 k的标称值开始测试。

  通常而言,FET输入运算放大器只需要限流串联电阻来提供保护,但双极性输入放大器最好同时用限流电阻和肖特基二极管来提供保护(如图3所示的RLIMIT和D2)。

  输入差分保护

  到目前为止的讨论都是关于过压共模状况,它通常与输入级结构固有的PN结正偏有关。

  过压保护还有一点也同样重要,那就是过大差分电压引起的过压。将过大差分电压施加于某些运算放大器时,可能导致其工作性能降低。

  这种性能降低是由"反向结击穿"引发的,这是输入级导通不良的第二种情况,发生在差分过压状况下。然而,对于PN结反向击穿,问题的性质可能更加微妙,图4所示为一个运放输入级的一部分。

  

图4:具有D1-D2输入差分过压保护网络的运算放大器输入级

 

  图4:具有D1-D2输入差分过压保护网络的运算放大器输入级

  该电路适用于OP27等低噪声运算放大器,也是许多其它采用低噪声双极性晶体管来构成差分对Q1-Q2的放大器的典型保护电路。如果没有任何保护,可以看出,两个输入间高于大约7 V的电压将导致Q2或Q1(取决于相对极性)反向结击穿。注意,如果是射极-基极击穿,则很小的反向电流也会导致两个晶体管的增益和噪声性能下降。发生射极-基极击穿后,运算放大器参数(如偏置电流和噪声等)可能会超出额定范围。这通常是永久性的,逐渐而微妙地发生,特别是在由瞬变触发的情况下。因此,几乎所有低噪声运算放大器,无论是基于NPN还是PNP,都会采用保护二极管,如输入上的D1-D2等。如果施加的电压超过±0.6 V,这些二极管就会导通,从而保护晶体管。

  虚线所示的串联电阻起到限流作用(为保护二极管提供保护),但所有情况下均未使用。例如,AD797没有这些电阻,因为它们会降低器件的1 nV/Hz额定噪声性能。注意,如果内部缺少这些电阻,则必须提供外部限流措施,以防受差分过压状况影响。显而易见,这里存在一个取舍关系,必须权衡考虑全面保护的程度与噪声性能的降幅。注意,应用电路本身可能已在运算放大器输入中提供足够的电阻,因而不需要额外的电阻。

  应用低噪声双极性输入级运算放大器时,首先应检查所选器件的数据手册,看它是否具有内部保护。需要时,应增加保护二极管D1-D2(如果运算放大器没有内置),确保避免Q1-Q2射极-基极击穿。如果应用中运算放大器经历的差分瞬变高于5 V,这些二极管应能处理。普通的低电容二极管足以胜任,如1N4148系列。视需要增加限流电阻,以便将二极管电流限制在安全水平。

  其它IC器件结,如基极-集电极和JFET栅极-源极结等,在击穿时不会表现出这样的性能降低。对于这些结,输入电流应以5 mA为限,除非数据手册另有规定。

  运算放大器和仪表放大器的这些不同过压防范措施看起来很复杂,事实上也的确如此!只要运算放大器(或仪表放大器)输入(和输出)超出设备边界条件,就可能发生危险情况或器件损毁。显然,为了实现最高可靠性,必须防患于未然。

  幸运的是,大多数应用都是完全内置于设备中,通常看到的是采用同一电源系统的其它IC的输入和输出。因此,这种情况下一般不需要箝位和保护方案。

  图5总结了过压考虑事项。

  

图5:电路内过压考虑事项汇总

 

  图5:电路内过压考虑事项汇总

  采用高共模电压仪表放大器的共模过压保护

  在精密运算放大器之前进行阻性输入衰减,是模拟通道过压保护的终极简化方案。这一组合相当于一个支持高压的仪表放大器,如AD629等,它能够以线性方式对叠加于最高±270 V共模电压的差分信号进行处理。此外,过压保护考虑最重要的一点是,片内电阻能够为最高±500 V的共模或差分电压提供保护。所有这些都是通过精密激光调整薄膜电阻阵列和运算放大器实现,如图6所示。

  

图6:高压仪表放大器IC AD629提供± 500 V输入过压保护;仅采用单个器件,极其简单,并且实现了防故障关断操作

 

  图6:高压仪表放大器IC AD629提供± 500 V输入过压保护;仅采用单个器件,极其简单,并且实现了防故障关断操作

  分析该拓扑结构可知,精密运算放大器AD629周围的阻性网络充当一个分压器,将施加于VIN的共模电压降低20倍。AD629同时以单位增益将输入差模信号VIN转换成以本地接地为基准的单端输出信号。增益误差不超过±0.03 %或±0.05 %,失调电压不超过0.5 mV或1 mV(取决于器件等级)。AD629的电源电压范围是±2.5 V至±18 V.

  这些因素相结合,使AD629成为可能经受危险瞬变电压的卡外模拟输入的简便、单器件保护解决方案。由于所用的电阻值相对较大,因此它本身就能保护器件,在不加电情况下,输入电阻也能安全地限制故障电流。此外,它还提供仪表放大器固有的运作优势:高CMR(500Hz时最小值86 dB)、出色的整体直流精度和灵活、简单的极性变化。

  对性能不利的一面是,与较低增益的仪表放大器配置相比,如AMP03等,多个因素使得AD629的输出噪声和漂移相对较高,包括高值电阻的约翰逊噪声和拓扑结构的高噪声增益(21倍)。这些因素与电阻噪声共同提高运算放大器的噪声和漂移,提高幅度高于典型值。

  当然,这个问题是否与具体应用有关,需要根据具体情况进行评估。

  内置过压保护的ADA4091-2运算放大器

  ADA4091-2是一款双通道、微功耗、单电源、3 MHz带宽放大器,具有轨到轨输入与输出特性。ADA4091-2保证可采用+3 V至+36 V单电源供电以及±1.5 V至±18 V双电源供电。

  ADA4091-2拥有过压保护输入和二极管,允许输入电压高于或低于供电轨12 V,非常适合鲁棒的工业应用。

  具体应用包括便携式电信设备、电源控制与保护、分流检测,以及具有宽输出范围的传感器接口。

关键字:运算  放大器  相位反转 编辑:神话 引用地址:运算放大器的输入过压保护和输出相位反转

上一篇:LM49153 G类耳机放大器解决方案
下一篇:自制逻辑检测器

推荐阅读最新更新时间:2023-10-12 20:34

60V 电流检测放大器提供可调的故障标记
    加利福尼亚州米尔皮塔斯 (MILPITAS, CA) – 2011 年 7 月 7 日 – 凌力尔特公司 (Linear Technology Corporation) 推出一款完整的高压侧电流检测器件 LT6109,该器件包括一个电流检测放大器、两个比较器和一个精确的 400mV 电压基准。当与一个分流电阻器相连时,高端电流检测放大器可精确地提取分路电压、将其放大并转移至地。这个输出可用于监视,并可连至两个内置比较器之一。LT6109 非常适用于电流测量和负载电流故障监视,尤其是因为 LT6109 的每一个组件都提供了卓越的精确度和速度。该电流检测放大器具有少于 350µV 的失调,比较器和基准合起来的门限误差不到 2%
[电源管理]
自适应前馈射频功率放大器设计
1.引言   现代无线通信的迅猛发展日益朝着增大信息容量,提高信道的频谱利用率以及提高线性度的方向发展。一方面,人们广泛采用工作于甲乙类状态的大功率微波晶体管来提高传输功率和利用效率;另一方面,无源器件及有源器件的引入,多载波配置技术的采用等,都将导致输出信号的互调失真。因此,在设计射频功率放大器时,必须对其进行线性化处理,以便使输出信号获得较好的线性度。一般常用的线性化技术包括:功率回退、预失真、前馈等,其中,功率回退技术能有效的改善窄带信号的线性度,而预失真技术和前馈技术,特别是前馈技术,由于其具有高校准精度,高稳定度以及不受带宽限制等优点,成为了改善宽带信号线性度时所采用的主要技术。本文首先简述了普通的前馈线性化技术
[模拟电子]
NI PXI缩短射频功率放大器的特征化时间
   我们使用NIPXI和LabVIEW减小特征化系统的尺寸、成本和功率消耗,并缩短总特征化时间。    我们使用NIPXI,能够将新组件的特征化时间从两周缩短为大约一天。   -GaryShipley,TriQuintSemiconductor   挑战:   在不牺牲测量精度或提高设备成本的情况下,缩短对日益复杂的无线功率放大器(PA)的特征化时间。   解决方案:   使用NILabVIEW软件和NIPXI模块化仪器开发功率放大器特征化系统,让我们在减小资产设备成本、功率消耗和物理空间的同时,将测试吞吐量提高了10倍。   作者:   GaryShipley-Tri
[测试测量]
NI PXI缩短射频功率<font color='red'>放大器</font>的特征化时间
采用MSP430设计的12位心电(ECG)放大器
作者Email: newtonian@263.net 摘要:本文介绍了心电放大器的基本电路构成,以及采用TI公司的MSP430系列单片机对心电信号进行模数转换处理的方法,还着重探讨了采用带硬件乘法器的MSP430F14X系列单片机对心电信号进行滤波处理的方法,并给出了相应的实验结果。 人体心肌产生的电信号传导到体表之后,由于在体表分布的不同而产生电位差,将这种电压只有mV级别的电位差放大并绘制成图,就得到了心电图(ECG)。心电图在心血管疾病的临床诊断中有非常重要的作用。通常采用的心电图按照导联数分有单导联,三导联,五导联以及十二导联等等;按照精度分常用的有8位和12位精度等等。单导联,精度低的心电图常用于进行心电监控以及心
[单片机]
如果没坏,就不要修理,调节固定增益差分放大器的增益
问题: 我们能够增加固定增益差分放大器的增益吗? 答案: 可以,通过增加更多的电阻。 经典的四电阻差分放大器可以解决许多测量难题。但是,总有一些应用需要的灵活性比这些放大器所能提供的更高。由于在差分放大器中电阻匹配直接影响到增益误差和共模抑制比(CMRR),所以将这些电阻集成到同一个裸片上可以实现高性能。但是,仅仅依靠内部电阻来设置增益,用户就无法在制造商的设计选择之外灵活选择自己想要的增益。 在信号链中使用固定增益放大器时,如果需要更多的增益,通常会添加另一个放大器级来实现所需的总增益。虽然这种方法非常有效,但它会增加整体的复杂性、所需的板空间、噪音、成本等。或者,您可以选择另一种方法,在不增加第二个增
[电源管理]
如果没坏,就不要修理,调节固定增益差分<font color='red'>放大器</font>的增益
可使运算放大器输出达到地电平的电流源
  LM324运算放大器是一种经济合算的选择,尤其是在你需要施加地电平输入时。据称LM324的输出包含地电平在内,但其电流吸收能力很差,使其应用受到限制。在输出电压低于0.5V时,这种运算放大器的吸收电流范围仅为2~100mA。你可使用一个外部电流吸收电路,将可用输出电压降低到毫伏电平。在图1中,Q1、Q2和R3组成一个电流源,耗尽LM324的输出电流。R4是负载,需要4mA的吸收电流。本设计因其饱和电压低而使用2N2222晶体管。本设计的输出特性就是所增晶体管Q1和Q2的饱和特性。利用这个电流源,输出电压是线性的,直至降到地电平之上22 mV为止。图2和图3示出了输出特性。最低可用输出电压取决于负载(吸收)电流。当负载电流为0.
[电源管理]
直流耦合对数放大器的应用电路
直流耦合对数放大器的应用电路 图5是一种如何利用AD8138差动放大器来实现以中值电压为参考的参考点的转变和单端到差动的转换电路。该电路由4个499Ω的电阻建立了一个增益整体。当在AD8138的VCOM管脚加以2.5V(可由参考电压的电阻分压获得)电压时,AD8138可输出2.5V的共模电压,其差动输出可直接用来驱动AD8310的1.1kΩ的输入阻抗。此时,必须对AD8138的失调电压进行调整。若在OFLF管脚加以1.9V左右的理论电压,AD8310内部的失调补偿电路就会失去作用。因此,对AD8138的偏置调整可同时调整两个器件的失调电压。调整的过程是把输入电路接地,同时轻微改变AD8138上反相输入中的增益电阻
[模拟电子]
直流耦合对数<font color='red'>放大器</font>的应用电路
选择电压反馈与电流反馈运算放大器的技巧
选择 电压反馈与电流反馈运算放大器的技巧 本文无法详细解释电流反馈放大器和电压反馈放大器之间的所有区别和选项,但我们可以列举出一些关键点。首先,用于电压反馈放大器的设计公式同样适用于电流反馈放大器,因此不需要学习新的内容。电压反馈放大器具有固定的增益带宽积,而电流反馈放大器没有,因此,您可以从电流反馈放大器获得更高的增益和更高的带宽。电压反馈放大器有两个高输入阻抗节点,电流反馈放大器只有一个高阻的同相输入,反相输入则是低阻抗输入。 电压反馈放大器具有“开环增益”,电流反馈放大器则具有“开环跨阻”。与电压反馈放大器相比,电流反馈放大器具有非常宽的带宽和非常高的压摆率。与电压反馈放大器不同的是,反馈电阻在电流反馈放大器
[模拟电子]
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved