基于AD7793的完整热电偶测温系统

最新更新时间:2012-02-11来源: 互联网关键字:AD7793  热电偶  测温系统 手机看文章 扫描二维码
随时随地手机看文章

电路功能与优势

  图1所示电路是一个基于24位Σ-Δ型ADC AD7793 的完整热电偶系统。AD7793是一款适合高精度测量应用的低功耗、低噪声、完整模拟前端,内置PGA、基准电压源、时钟和激励电流,从而大大简化了热电偶系统设计。系统峰峰值噪声约为0.02°C。

  

图1. 带冷结补偿的热电偶测量系统(原理示意图:未显示去耦和所有连接)

 

  图1. 带冷结补偿的热电偶测量系统(原理示意图:未显示去耦和所有连接)

  AD7793的最大功耗仅500 μA,因而适合低功耗应用,例如整个发送器的功耗必须低于4 mA的智能发送器等。AD7793还具有关断选项。在这种模式下,整个ADC及其辅助功能均关断,器件的最大功耗降至1 μA.

  AD7793提供一种集成式热电偶解决方案,可以直接与热电偶接口。冷结补偿由一个热敏电阻和一个精密电阻提供。该电路只需要这些外部元件来执行冷结测量,以及一些简单的R-C滤波器来满足电磁兼容性(EMC)要求。

  电路描述

  本电路使用T型热电偶。该热电偶由铜和康铜构成,温度测量范围为?200°C至+400°C,产生的温度相关电压典型值为40 μV/°C.

  热电偶的传递函数不是线性的。在0°C至+60°C的温度范围,其响应非常接近线性。但是,在更宽的温度范围内,必须使用一个线性化程序处理。

  测试电路不包括线性化功能,因此,本电路的有用测量范围是0°C到+60°C.在该温度范围内,热电偶产生0 mV至2.4 mV的电压。内部1.17 V基准电压用于热电偶转换。因此,AD7793的增益配置为128。

  AD7793采用单电源供电,热电偶产生的信号必须被偏置到地以上,从而处于该ADC支持的范围。对于128倍的增益,模拟输入端的绝对电压必须在GND + 300 mV至AVDD – 1.1 V范围内。

  AD7793片上集成的偏置电压发生器偏置热电偶信号,使其共模电压为AVDD/2,确保以相当大的裕量满足输入电压限值要求。

  热敏电阻在+25°C时的值为1 kΩ,0°C时的典型值为815 Ω,+30°C时的典型值为1040 Ω。假设0°C至30°C的传递函数为线性,则冷结温度与热敏电阻R之间的关系为:

  冷结温度 = 30 × (R – 815)/(1040 – 815)

  AD7793的1 mA激励电流用于为热敏电阻和2 kΩ精密电阻供电。基准电压利用该2 kΩ外部精密电阻产生。这种架构提供一种比率式配置,激励电流用于为热敏电阻供电,并产生基准电压。因此,激励电流值的偏差不会改变系统的精度。

  对热敏电阻通道进行采样时,AD7793以1倍的增益工作。对于+30°C的最大冷结温度,热敏电阻上产生的最大电压为1 mA × 1040 Ω = 1.04 V.

  热敏电阻的选择条件是:热敏电阻上产生的最大电压乘以PGA增益的结果小于或等于精密电阻上产生的电压。

  对于ADC_CODE的转换值,相应的热敏电阻值R等于:

  R = (ADC_CODE – 0x800000) × 2000/223

  还需要考虑AD7793 IOUT1引脚的输出顺从电压。使用1 mA激励电流时,输出顺从电压等于AVDD – 1.1 V.从上述计算可知,电路满足这一要求,因为IOUT1的最大电压等于精密电阻上的电压加上热敏电阻上的电压,等于2 V + 1.04 V = 3.04 V.

  AD7793以16.7 Hz的输出数据速率工作。每读取10个热电偶转换结果,就读取1个热敏电阻转换结果。相应的温度等于:

  温度 = 热电偶温度 + 冷结温度

  AD7793的转换结果由模拟微控制器ADuC832 处理,所得的温度显示在LCD显示器上。

  该热电偶设计采用6 V(2节3 V锂电池)电池供电。一个二极管将6 V电压降至适合AD7793和模拟微控制器ADuC832的电平。ADuC832电源与AD7793电源之间有一个RC滤波器,用以降低进入AD7793的电源数字噪声。

  图2显示了T型热电偶上产生的电压与温度的关系。圆圈内的区域是从0°C到+60°C,该区域内的传递函数接近线性。

  

图2. 热电偶电动势与温度的关系

 

  图2. 热电偶电动势与温度的关系

  放大 当系统处于室温时,热敏电阻应指示室温的值。热敏电阻指示的是相对于冷结温度的相对温度,即冷结(热敏电阻)与热电偶的温差。因此,在室温时,热电偶应指示0°C。

  如果将热电偶放在一个冰桶中,热敏电阻仍旧测量环境(冷结)温度。热电偶应指示热敏电阻值的负值,使得总温度等于0。

  最后,对于16.7 Hz的输出数据速率和128倍的增益,AD7793的均方根噪声等于0.088 μV.峰峰值噪声等于:

  6.6 × 均方根噪声 = 6.6 × 0.088 μV = 0.581 μV

  如果热电偶的灵敏度恰好为40 μV/°C,则热电偶的温度测量分辨率为:

  0.581 μV ÷ 40 μV = 0.014°C

图3所示为实际的测试板。系统评估如下:分别在室温时以及将热电偶放入冰桶的情况下,测量热敏电阻温度、热电偶温度和分辨率。结果如表1所示。

  

图3. 采用AD7793的热电偶系统

 

  图3. 采用AD7793的热电偶系统

  

 

  从表1可知,热电偶报告的温度正确,热敏电阻则有0.3°C的误差。这是未包括线性化处理时的系统精度。如果对热电偶和热敏电阻进行线性化处理,系统精度将会提高,系统将能测量更宽的温度范围。

  如果每读取10次就计算一次最小与最大温度读数之差,则用温度表示的峰峰值噪声为0.02°C.因此,实际的峰峰值分辨率非常接近期望值。

关键字:AD7793  热电偶  测温系统 编辑:神话 引用地址:基于AD7793的完整热电偶测温系统

上一篇:如何安装拾音器
下一篇:精密ADC用差分驱动器

推荐阅读最新更新时间:2023-10-12 20:34

请问热电偶和热电阻的识别方法有哪些?
热电偶和热电阻的识别方法 工业用热电偶和热电阻保护套管的外形几乎是一样的,有的测温元件外形很小,如铠装型的,两者外形又基本相同,在没有铭牌,又不知道型号的情况下,可采用以下方法识别。 首先是看测温元件的引出线,通常热电偶只有两根引出线,如果有三根引出线就是热电阻了。但对于有四根引出线的,需要测量电阻值来判断是双支热电偶,还是四线制的热电阻。先从四根引出线中找出电阻几乎为零的两对引出线,再测量这两对引出线间的电阻值,如果为无穷大,则就是双支热电偶了,电阻值几乎为零的一对引出线就是一支热电偶。如果两对引出线的电阻在10-110Ω之间,则是单支四线制的热电阻,看它的电阻值与什么分度号的热电阻最接近,则就是该分度号的热电阻。 如果只有两
[测试测量]
请问<font color='red'>热电偶</font>和热电阻的识别方法有哪些?
基于CC2430和DS18B20的无线测温系统设计
目前,很多场合的测温系统采用的还是有线测温设备,由温度传感器、分线器、测温机和监控机等组成,各部件之间采用电缆连接进行数据传输。这种系统布线复杂、维护困难、成本高,可采用无线方案解决这些问题。无线测温系统是一种集温度信号采集、大容量存储、无线射频发送、LED(或LCD)动态显示、控制与通信等功能于一体的新型系统。 本文从低功耗、小体积、使用简单等方面考虑,基于射频SoC CC2430和数字温度传感器DS18B20设计了一个无线测温系统,整个系统由多个无线节点和1个基站组成。无线节点工作在各个测温地点,进行温度数据采集和无线发送。基站与多个节点进行无线通信,并通过数码管将数据显示出来,同时可以通过RS-232串口将数据
[单片机]
xtr101热电偶 电路图
xtr101热电偶 电路图 如图所示为具有两个温度区域和二极管冷端补偿的热电偶输入电路。该电路采用J型热电偶作为温度传感器,半导体二极管D作为冷端温度补偿形成测量的相对0oC,测量温度,T1范围为0~1000oC。温度T2等于半导体二极管D的温度TD。当测量温度在0~1000oC变化时,J型热电偶将有58mV的变化。在环境温度为+25℃时,典型值为1.28mV。对应0oC的传输电流为4mA,对应+1000oC的传输电流为20mA。
[电源管理]
xtr101<font color='red'>热电偶</font> 电路图
基于FPGA的远距离测温器数控系统设计
摘要:介绍了远距离测温器的结构组成和工作原理,设计了基于FPGA的远距离测温器数控系统的数据采集与控制系统,使用Altera公司的Cyclonell系列的FPGA实现了包括数据采集、数据通信等控制功能,着重叙述了硬件与软件的实现方法。该数控系统具有测量精度高,低功耗等特点。 关键词:远距离测温;FPGA;数据采集与控制系统;NiosⅡ 0 引言 在一些特殊的科研场所和工业生产单位,出于各种条件限制,仪表往往不能就近测量物体实际温度;而以往所使用的一些传感器在使用时受到各种环境因素的影响,使得传感器测量得到的温度不能精确地反映被测物体的温度。因此,人们需要找寻一种远距离测温器,能够精确测量物体温度,并能实时监
[嵌入式]
基于FPGA的远距离<font color='red'>测温</font>器数控<font color='red'>系统</font>设计
基于数字温度传感器DSl8B20芯片的多点测温系统
0 引言   多点测温系统在工业领域及其国民生产中有广泛的用途。如在化工领域中,经常需要检测和控制反应釜中的液体的温度,使之能够稳定在一定的温度范围之内;在粮食储存以及加工过程中,会储存高水分的粮食,高水分的粮食极易升温发霉,因此粮食储存的测温显得尤为重要。以往的测温系统多采用热敏电阻,精度低、易损坏,且模拟信号远距离温度测量系统中,需要很好地解决引线误差补偿问题、多点测量切换误差问题和放大电路零点漂移误差问题等技术问题,才能够达到较高的测量精度。   因此,在温度测量系统中,具有足够的精度和实时性,控制足够的精度,并且尽可能具有较低的成本,这样的产品才具有实用价值。本文采用新型数字温度传感器 DSl8B20,它具有体
[模拟电子]
基于数字温度传感器DSl8B20芯片的多点<font color='red'>测温</font><font color='red'>系统</font>
如何利用ADUCM360精密监控热电偶温度(一)
电路功能与优势 本电路显示如何在精密热电偶温度监控应用中使用精 密模拟微控制器ADuCM360/ADuCM361。ADuCM360/ADuCM361集成双通道24位-型模数转换器(ADC)、双通道可编程电流源、12位数模转换器(DAC)、1.2 V内部基准电压源、ARM Cortex-M3内核、126 kB闪存、8 kB SRAM以及各种数字外设,例如UART、定时器、SPI和I2C接口等。 在本电路中,ADuCM360/ADuCM361连接到一个热电偶和一个100 铂电阻温度检测器(RTD)。RTD用于执行冷结补偿。 在源代码中,ADC采样速率选择4 Hz。当ADC输入可编程增益放大器(PGA)的增益配置为32
[模拟电子]
如何利用ADUCM360精密监控<font color='red'>热电偶</font>温度(一)
热电偶检定易忽视问题
  检定人员在检定热电偶过程中,对于接线柱不牢靠、热电偶短路或捆扎偏离几何中心等常见问题导致的所测数据不准确的情况,一般都能及时发现轻松处理,但是会遗忘一些影响检测结果却容易被忽视的问题。   一、热电偶的长度   JJG351-1996《工作用廉金属热电偶》检定规程中明确规定热电偶长度不小于750mm,之所以对热电偶长度作出规定,是因为考虑到热电偶在离开测温区后要有足够宽的温度梯度区。热电偶的热电动势也就产生在这一区域,要有效地阻止热电偶热端(测量端)的热量传给冷端(接线端),最基本的方法就是热电偶的冷端要有足够的距离远离热端。一般来说由于热电偶长度不够带来的误差是负的,修正值是正的。长度越短,带来的误差也越大,因此
[测试测量]
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved