电子仿真软件EWB操作与分析方法

最新更新时间:2012-03-08来源: 互联网关键字:电子仿真  EWB  操作与分析 手机看文章 扫描二维码
随时随地手机看文章

1.创建电路
(1)元器件操作
  元件选用:打开元件库栏,移动鼠标到需要的元件图形上,按下左键,将元件符号拖拽到工作区。
元件的移动:用鼠标拖拽。
元件的旋转、反转、复制和删除:用鼠标单击元件符号选定,用相应的菜单、工具栏,或单击右键激活弹出菜单,选定需要的动作。
  元器件参数设置:选定该元件,从右键弹出菜单中选Component Properties可以设定元器件的标签(Label)、编号(Reference ID)、数值(Value)和模型参数(Model)、故障(Fault)等特性。
  说明:①元器件各种特性参数的设置可通过双击元器件弹出的对话框进行; ②编号(Reference ID)通常由系统自动分配,必要时可以修改,但必须保证编号的唯一性; ③故障(Fault)选项可供人为设置元器件的隐含故障,包括开路(Open)、短路(Short)、漏电(Leakage)、无故障(None)等设置。
(2)导线的操作
  主要包括:导线的连接、弯曲导线的调整、导线颜色的改变及连接点的使用。
  连接:鼠标指向一元件的端点,出现小园点后,按下左键并拖拽导线到另一个元件的端点,出现小园点后松开鼠标左键。
  删除和改动:选定该导线,单击鼠标右键,在弹出菜单中选delete 。或者用鼠标将导线的端点拖拽离开它与元件的连接点。
  说明:①连接点是一个小圆点,存放在无源元件库中,一个连接点最多可以连接来自四个方向的导线,而且连接点可以赋予标识; ②向电路插入元器件,可直接将元器件拖曳放置在导线上,然后释放即可插入电路中。
(3)电路图选项的设置
  Circuit/Schematic Option对话框可设置标识、编号、数值、模型参数、节点号等的显示方式及有关栅格(Grid)、显示字体(Fonts)的设置,该设置对整个电路图的显示方式有效。其中节点号是在连接电路时,EWB自动为每个连接点分配的。

2.使用仪器
(1) 电压表和电流表
从指示器件库中,选定电压表或电流表,用鼠标拖拽到电路工作区中,通过旋转操作可以改变其引出线的方向。双击电压表或电流表可以在弹出对话框中设置工作参数。电压表和电流表可以多次选用。
(2) 数字多用表
数字多用表的量程可以自动调整。下图是其图标和面板。


其电压、电流档的内阻,电阻档的电流和分贝档的标准电压值都可以任意设置。从打开的面板上选Setting 按钮可以设置其参数。
(3)示波器
示波器为双踪模拟式,其图标和面板如下图所示。



其中:
  Expand ---- 面板扩展按钮;
  Time base ---- 时基控制;
  Trigger ---- 触发控制;包括:
       ①Edge ---- 上(下)跳沿触发
       ②Level ---- 触发电平
       ③触发信号选择按钮:Auto(自动触发按钮);A、B(A、B通道触发按钮);Ext(外触发按钮)
  X(Y)position ---- X(Y)轴偏置;
  Y/T、B/A、A/B ---- 显示方式选择按钮(幅度/时间、B通道/A通道、A通道/B通道);
  AC、0、DC ---- Y轴输入方式按钮(AC、0、DC)。

(4)信号发生器
信号发生器可以产生正弦、三角波和方波信号,其图标和面板如下图所示。可调节方波和三角波的占空比。


(5)波特图仪
  波特图仪类似于实验室的扫频仪,可以用来测量和显示电路的幅度频率特性和相位频率特性。波特图仪的图标和面板如下图所示。
  波特图仪有IN和OUT两对端口,分别接电路的输入端和输出端。每对端口从左到右分别为+V端和-V端,其中IN端口的+V端和-V端分别接电路输入端的正端和负端,OUT端口的+V端和-V端分别接电路输出端的正端和负端。此外在使用波特图仪时,必须在电路的输入端接入AC(交流)信号源,但对其信号频率的设定并无特殊要求,频率测量的范围由波特图仪的参数设置决定。


 

其中:
  Magnitude(Phase)---- 幅频(相频)特性选择按钮;
  Vertical(Horizontal)Log/Lin ---- 垂直(水平)坐标类型选择按钮(对数/线性);
  F(I)---- 坐标终点(起点)。

3.元件库中的常用元件
EWB带有丰富的元器件模型库,在电路分析软件实验中要用到的元件及其参数的意义如下。

3.元件库中的常用元件
EWB带有丰富的元器件模型库,在电路分析软件实验中要用到的元件及其参数的意义如下。

(1) 信号源

元件名称 参数 缺省设置值 设置范围
电池(直流电压源) 电压V 12V uV—kV
直流电流源 电流I 1A uA—kA

交流电压源

电压
频率
相位

120V
60Hz
0

uV—kV
Hz—MHz
Deg

交流电流源

电流I
频率
相位

1A
1HZ
0

uA—kA
Hz—MHz
Deg

电压控制电压源 电压增益E 1V/V mV/V—kV/V
电压控制电流源 互导G 1S mS—MS
电流控制电压源 互阻H 1W mW—MW
电流控制电流源 电流增益F 1A/A mA/A—kA/A
 
元件名称 参数 缺省设置值 设置范围
电池(直流电压源) 电压V 12V uV—kV
直流电流源 电流I 1A uA—kA

交流电压源

电压
频率
相位

120V
60Hz
0

uV—kV
Hz—MHz
Deg

交流电流源

电流I
频率
相位

1A
1HZ
0

uA—kA
Hz—MHz
Deg

电压控制电压源 电压增益E 1V/V mV/V—kV/V
电压控制电流源 互导G 1S mS—MS
电流控制电压源 互阻H 1W mW—MW
电流控制电流源 电流增益F 1A/A mA/A—kA/A

 

(2)基本元件

元件名称 参数 缺省设置值 设置范围
电阻 电阻值R 1kW W—MW
电容 电容值C uF pF—F
电感 电感值L 1mH uH—H
线性变压器

匝数比 (初级/次级)N漏感LE
激磁电感LM
初级绕阻电阻RP
次级绕阻电阻RS

2
0.001H
5H
0
0

 

开关

Space 
 

 

A—Z,0-9,Enter,Space

 

 

延迟开关

导通时间Ton
断开时间Toff

0.5S
0S

pS—S


pS—S

 

 

2.jpg
4、元器件库和元器件的创建与删

  对于一些没有包括在元器件库内的元器件,可以采用自己设定的方法,自建元器件库和相应元器件。
  EWB自建元器件有两种方法:一种是将多个基本元器件组合在一起,作为一个"模块"使用,可采用下文提到的子电路生成的方法来实现;另一种方法是以库中的基本元器件为模板,对它内部参数作适当改动来得到,因而有其局限性。
  若想删除所创建的库名,可到EWB的元器件库子目录名"Model"下,找出所需删除的库名,然后将它删除。

5、 子电路的生成与使用
  为了使电路连接简洁,可以将一部分常用电路定义为子电路。方法如下:首先选中要定义为子电路的所有器件,然后单击工具栏上的生成子电路的按钮或选择Circuit/Create Subcircuit命令,在所弹出的对话框中填入子电路名称并根据需要单击其中的某个命令按钮,子电路的定义即告完成。所定义的子电路将存入自定义器件库中。
  一般情况下,生成的子电路仅在本电路中有效。要应用到其它电路中,可使用剪贴板进行拷贝与粘贴操作,也可将其粘贴到(或直接编辑在)Default.ewb文件的自定义器件库中。以后每次启动EWB,自定义器件库中均自动包含该子电路供随时调用。

6、帮助功能的使用
  EWB提供了丰富的帮助功能,选择Help/Help Index命令可调用和查阅有关的帮助内容。对于某一元器件或仪器,"选中"该对象,然后按F1键或单击工具栏的帮助按钮,即可弹出与该对象相关的内容。建议充分利用帮助内容。

7、基本分析方法
(1)直流工作点的分析
  直流工作点的分析是对电路进行进一步分析的基础。在分析直流工作点之前,要选定Circuit/Schematic Option中Show nodes(显示节点)项,以把电路的节点号显示在电路图上。
(2)交流频率分析
  交流频率分析即分析电路的频率特性。需先选定被分析的电路节点,在分析时,电路的直流源将自动置零,交流信号源、电容、电感等均处于交流模式,输入信号也设定为正弦波形式。
(3)瞬态分析
  瞬态分析即观察所选定的节点在整个显示周期中每一时刻的电压波形。在进行瞬态分析时,直流电源保持常数,交流信号源随着时间而改变,电容和电感都是能量储存模式元件。在对选定的节点作瞬态分析时,一般可先对该节点作直流工作点的分析,这样直流工作点的结果就可作为瞬态分析的初始条件。
(4)傅里叶分析
  傅里叶分析用于分析一个时域信号的直流分量、基频分量和谐波分量。一般将电路中交流激励源的频率设定为基频,若在电路中有几个交流源时,可以将基频设定在这些频率的最小公因数上。

4、元器件库和元器件的创建与删

  对于一些没有包括在元器件库内的元器件,可以采用自己设定的方法,自建元器件库和相应元器件。
  EWB自建元器件有两种方法:一种是将多个基本元器件组合在一起,作为一个"模块"使用,可采用下文提到的子电路生成的方法来实现;另一种方法是以库中的基本元器件为模板,对它内部参数作适当改动来得到,因而有其局限性。
  若想删除所创建的库名,可到EWB的元器件库子目录名"Model"下,找出所需删除的库名,然后将它删除。

5、 子电路的生成与使用
  为了使电路连接简洁,可以将一部分常用电路定义为子电路。方法如下:首先选中要定义为子电路的所有器件,然后单击工具栏上的生成子电路的按钮或选择Circuit/Create Subcircuit命令,在所弹出的对话框中填入子电路名称并根据需要单击其中的某个命令按钮,子电路的定义即告完成。所定义的子电路将存入自定义器件库中。
  一般情况下,生成的子电路仅在本电路中有效。要应用到其它电路中,可使用剪贴板进行拷贝与粘贴操作,也可将其粘贴到(或直接编辑在)Default.ewb文件的自定义器件库中。以后每次启动EWB,自定义器件库中均自动包含该子电路供随时调用。

6、帮助功能的使用
  EWB提供了丰富的帮助功能,选择Help/Help Index命令可调用和查阅有关的帮助内容。对于某一元器件或仪器,"选中"该对象,然后按F1键或单击工具栏的帮助按钮,即可弹出与该对象相关的内容。建议充分利用帮助内容。

7、基本分析方法
(1)直流工作点的分析
  直流工作点的分析是对电路进行进一步分析的基础。在分析直流工作点之前,要选定Circuit/Schematic Option中Show nodes(显示节点)项,以把电路的节点号显示在电路图上。
(2)交流频率分析
  交流频率分析即分析电路的频率特性。需先选定被分析的电路节点,在分析时,电路的直流源将自动置零,交流信号源、电容、电感等均处于交流模式,输入信号也设定为正弦波形式。
(3)瞬态分析
  瞬态分析即观察所选定的节点在整个显示周期中每一时刻的电压波形。在进行瞬态分析时,直流电源保持常数,交流信号源随着时间而改变,电容和电感都是能量储存模式元件。在对选定的节点作瞬态分析时,一般可先对该节点作直流工作点的分析,这样直流工作点的结果就可作为瞬态分析的初始条件。
(4)傅里叶分析
  傅里叶分析用于分析一个时域信号的直流分量、基频分量和谐波分量。一般将电路中交流激励源的频率设定为基频,若在电路中有几个交流源时,可以将基频设定在这些频率的最小公因数上。

关键字:电子仿真  EWB  操作与分析 编辑:神话 引用地址:电子仿真软件EWB操作与分析方法

上一篇:满足小体积和高性能需求的层叠封装技术(PoP)
下一篇:pcb layout中IC常用封装介绍

推荐阅读最新更新时间:2023-10-12 20:36

嵌入式实时操作系统Salvo的内核分析配置
摘要:简要介绍Salvo的基本特点;详细分析Salvo的内核管理、运行机制;深入探讨Salvo用户目标代码的生成与配置,并给出不同用户目标代码生成方式下的用户目标代码生成流程。 关键词:嵌入式操作系统 Salvo 内核分析 任务控制块 配置 引言 目前电子产品开发广泛采用以微处理器为核心的电子系统。开发以微处理器为核心的电子系统(以下简称微处理器系统)采用传统的无限循环函数模式,产品的开发周期和稳定性都无法保障,因此,在微处理器系统开发中引入嵌入式实时操作系统RTOS。RTOS的引入消耗了部分系统资源。这部分系统资源对于高档微处理器系统影响不大;对于中小规模微处理器系统,特别是单片机系统,由于RTOS资源的占用,使用户可用
[嵌入式]
基于汽车电子控制器的模态仿真技术研究
1 前言 随着汽车电子产品在整车中的广泛应用,汽车电子产品的可靠性也备受关注。振动问题是影响汽车电子产品可靠性的一个重要因素,如果在研发设计阶段就能准确的预估汽车电子产品的振动特性,则对汽车电子产品的可靠性设计具有重大的意义。利用有限元技术能够在研发设计阶段预估汽车电子产品的振动特性,但是对于具有复杂结构的电子产品来说,由于模型的复杂度,材料参数的不确定性、边界设定的非线性、计算机配置要求等因素的影响,使仿真结果的可信度不高。因此提高仿真分析的可信度是当今仿真工作者的首要任务。本文对某具有复杂结构的汽车电子控制器进行了模态仿真分析和模态试验,并对仿真分析中的几何模型修正,单元类型选择,边界条件设定等方法进行了研究。 2 汽
[嵌入式]
合众达电子推出增强型XDS560PLUS仿真
合众达电子日前正式对外发布了增强型SEED-XDS560PLUS仿真器,这是合众达自1993年推出第一台国产TMS320C3X硬件仿真器以来的第七代仿真器,这将是DSP调试工具发展的一个重要里程碑。 仿真器的更新换代是市场赋予合众达电子的使命,为了顺应TI DSP新技术发展以及市场对仿真器成本的考虑,合众达在TI XDS560技术基础上采用了更高性价比CPU来实现DSP的开发。为了降低 DSP开发门槛,更好普及与推广DSP技术,合众达在XDS560PLUS新品发布的同时,全国实行9800元买一送一让利大活动! 与传统XDS560USB相比,SEED-XDS560PLUS仿真器有如下革命性突破
[嵌入式]
是德科技推出全新捷变矢量适配器助力电子战威胁仿真
生成对脉冲信号的复杂 IQ 定义调制 频率、幅度和相位切换时间仅为 170 ns 以 120 dB 的捷变幅度范围仿真真实的到达角和扫描上扫描(scan-on-scan) 是德科技公司(NYSE:KEYS)推出一款捷变矢量适配器,该适配器可进一步扩展 UXG X 系列捷变信号发生器的功能,使其能够基于 IQ 数据生成复杂的脉冲信号和波形,实现更逼真的电子战威胁仿真。搭配是德科技现有的商用 UXG X 系列捷变信号发生器使用时,N5194A UXG X 系列捷变矢量适配器可实现业界最高保真度的捷变威胁仿真,因此适合在航空航天与国防应用中使用。 N5194A UXG X 系列捷变矢量适配器可在 50 MHz 至 20 GH
[测试测量]
电子电路设计中EMC/EMI的模拟仿真
为了保证设计的PCB板具有高质量和高可靠性,设计者通常要对PCB板进行热温分析,机械可靠性分析。由于PCB板上的电子器件密度越来越大,走线越来越窄,信号的频率越来越高,不可避免地会引入EMC(电磁兼容)和EMI(电磁干扰)的问题,所以对电子产品的电磁兼容分析显得特别重要。与IC设计相比,PCB设计过程中的EMC分析和模拟仿真是一个薄弱环节。 PCB设计中EMC/EMI分析的对象     在PCB设计中,EMC/EMI主要分析布线网络本身的信号完整性,实际布线网络可能产生的电磁辐射和电磁干扰以及电路板本身抵抗外部电磁干扰的能力,并且依据设计者的要求提出布局和布线时抑制电磁辐射和干扰的规则,作为整个PCB设计过程的指导原则。具
[电源管理]
<font color='red'>电子</font>电路设计中EMC/EMI的模拟<font color='red'>仿真</font>
三种嵌入式操作系统的分析比较
摘要:提要三种常用的嵌入式操作系统——Palm OS、Windows CE、Linux;在此基础上、分析、比较这三种嵌入式操作系统,给出它们之间的异同点及各自的适用范围。 关键词:嵌入式系统 嵌入式操作系统 Palm OS Windows CE Linux 1 嵌入式系统与嵌入式操作系统 1.1 嵌入式系统 嵌入式系统是以嵌入式计算机为技术核心,面向用户、面向产品、面向应用,软硬件可裁减的,适用于对功能、可靠性、成本、体积、功耗等综合性能有严格要求的专用计算机系统。 嵌入式系统应具有的特点是:高可靠性;在恶劣的环境或突然断电的情况下,系统仍然能够正常工作;许多嵌入式应用要求实时性,这就要求嵌入式操作系统具有实时处理能力
[应用]
结合MDA-EDA集成电子散热的仿真解决方案
随着目前 电子 产品的功能越来越复杂,功耗越来越大;系统产生的热量也越来越大,而PCB的集成密度却越来越高。据相关数据显示,PCB板的面积已经缩小一半,而板上集成的元器件却增加了3.5倍,整个PCB板的集成密度增加了7倍。PCB板和系统在朝着密度更高、速度更快、发热量更大的方向发展。另外,由于电路板过热引发的问题也越来越受到关注,热 仿真 将成为电子设计过程中一个不可或缺的步骤。传统的热仿真测试主要在产品设计验证阶段进行,MDA和EDA之间不能很好衔接。日前,Mentor Graphics公司推出了一款可覆盖从概念设计阶段至设计验证阶段的电子散热方案—FloTHERMXT,它支持在所有设计阶段进行热 仿真 测试,是首个结合MDA-
[电源管理]
结合MDA-EDA集成<font color='red'>电子</font>散热的<font color='red'>仿真</font>解决方案
泰克PRISM平台在NAB2018荣获NewBay最佳表现奖
业界领先的视频测试、监测和诊断解决方案创新企业——泰克科技公司日前宣布,其PRISM媒体分析解决方案现在提供了完善的SMPTE ST 2110信号发生和分析功能,在TV Technology刚刚举办的NAB2018展览会上荣获NewBay颁发的最佳表现奖。 为帮助广播公司向IP部署迁移,PRISM媒体分析解决方案支持最近出版的SMPTE ST 2110成套标准(-10,-20,-30,-40,-21),用于管理IP网络上的专业媒体,借助全新的低成本、现场可升级的信号发生功能,在混合/SDI网络中测试IP和12G-SDI时将为用户带来更多信心。 “使用新的IP标准,为广播工程师提供所需工具、确保网络的性能和稳定性至关重
[测试测量]
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved