高级动态性能模数转换器简介

最新更新时间:2012-08-17来源: 互联网关键字:高级动态性能  模数转换器  简介 手机看文章 扫描二维码
随时随地手机看文章

ADC12C/DSxxx和ADC14C/DSxxx系列模数转换器内置高性能的采样及保持放大器和高精度带隙电压参考电路,输入带宽高达1GHz,因此可以支持中频采样工作。此外,这系列芯片输入方面有单及双通道,而输出方面有并行CMOS及串行LVDS可供选择,更容易将FPGA或ASIC与模拟/数字转换器连接一起。这系列芯片的各型号产品都引脚兼容,确保系统可以轻易由12位升级至14位,部分芯片更可在摄氏-40至+85℃的广阔工业温度范围内工作。单通道的型号采用32引脚的LLP封装,尺寸5mm×5mm,而双通道的型号则采用60引脚的LLP封装,尺寸9mm×9mm。 

这系列模数转换器若以1GHz以上的满功率带宽工作,则具有优良的动态性能及线性度,功耗较低。这系列芯片若以高达300MHz的输入频率工作,其无杂散信号动态范围(SFDR)可高达80dB。若采用3.0V的供电电压,其功耗更低至320mW。即使输入频率超过300MHz,信噪比仍然高达70dB以上,让系统设计工程师可以充分利用这个低噪声的优点,改善移动电话基站的接收能力。由于这系列芯片具有高带宽及高采样率的优点,因此可以支持高中频采样。换言之,系统无需加设下变频级,为系统节省可观的成本,而且低功耗的特点也令系统更稳定可靠。最后要强调的一点是,这系列芯片的带宽很高,因此驱动器放大器不会受太多的限制,让工程师可以精简信号路径的滤波系统。 

若模拟输入频率较低,则以80MSPS的采样率工作,其信噪比可达75dBFS, SFDR可达90dB,有效位数(ENOB)12位。若采样率为105MSPS,信噪比可达74.5dBFS,SFDR可达90dB,ENOB可达11.9位。至于直流电方面的表现,这系列模数转换器的输入偏移误差±1mV,增益误差±0.5%FS,微分非线性(DNL)误差±0.5LSB,而积分非线性(INL)误差±1.5LSB。由于这系列芯片采用先进电路设计,因此功耗可降至最低,实际功耗则取决于工作频率。由于时钟输出引脚的上升边缘位于输出信号眼图的中央位置,因此系统设计工程师可以利用时钟输出引脚捕捉并行的CMOS输出数据。 

高速传输的解决方案 

ADC14C105双通道模数转换器可将两条通道的不同参数互相对准,在对准过程中,芯片先将所取得的CMOS时钟输入传送到芯片的核心,然后由一条缓冲通道再将时钟输入传送到双通道的时钟输入端,整个过程只需4个CMOS栅极。此外,芯片内部区段分隔及供电路径极为匹配,使通道间的孔径抖动失配不超过30fs,而通道间的孔径延迟失配则不超过50ps。此外,这款双通道模数转换器的通道间增益误差失配不超过±0.2%FS,偏移失配不超过±1mV,而通道间的串音干扰则达到-95dB以上。 



图1 ADC14C105以105MSPS采样率工作时,信噪比及无杂散信号动态范围的频率变化 

LVDS是个电磁干扰极低的接口解决方案,最适用于高速的数据转换器,已成为高速数据传输的标准接口。串行LVDS输出模数转换器设有单线及双线两种不同的数据传输模式,这种设计的目的是要降低LVDS数据传输率一半。单线模式适用于25MSPS至65MSPS的范围,这个范围内的采样率相当于350Mbps至910Mbps的数据传输率。双线模式的数据传输率刚好是上述传输率的一半,因为LVDS输出引脚的数目增加了一倍,因此,LVDS模数转换器若采用双线模式工作,转换率便可提高到50MSPS至105MSPS的范围内。  

LVDS接口设有偏移模式和字对准模式两种不同的数据捕捉方式,以便解串器更易捕捉数据,用户则可按照个别应用的需要,选用适合的数据捕捉方式。正如图2的数据所显示,SD0/SD1两条通道采用字对准的模式作为预设模式。若采用偏移模式,SD0通道的数据比SD1通道的数据延迟半个字。换言之,加设双线模式这一选项可以精简高速数据传输系统的设计流程,使工程师的设计工作变得更为容易。 



图2 双线模式的定时时序图 

为了确保LVDS接口的调试功能,芯片可以支持不同的测试模式,包括预设测试模式和用户自选测试模式。此外,这款双通道芯片的许多功能都可加以设定,例如,可以将个别控制引脚连接电源或地线,然后进行设定,也可利用串行外围设备接口(SPI)设定有关功能。 

图3显示一幅典型的眼图,图中清楚显示串行LVDS接口如何传送数据。图中的信号以80MSPS或1.12Gbps的速度传送,信号抖动,例如随机抖动、确定性抖动以及不同数据的不同抖动,都清楚显示出来。以上抖动所产生的任何影响都必须计算在内,以便取得数据捕捉窗口。这款模数转换器为数据捕捉提供90%的窗口容限。 



图3 ADC14DS105 芯片以1.12Gbps速度工作时的眼图 

IDCW=80MS/s×14bit=1.12Gbps=1bit/892.9 ps 

ADCW=100×(1 - Tj/IDCW)=100×(1-85ps/892.9ps)=90.5% 

公式中的IDCW是理想数据捕捉窗口,而ADCW是真实数据捕捉窗口。

关键字:高级动态性能  模数转换器  简介 编辑:马悦 引用地址:高级动态性能模数转换器简介

上一篇:完整的4 mA至20 mA HART解决方案
下一篇:ADI 的精密ADC用差分驱动器

推荐阅读最新更新时间:2023-10-12 20:41

笔记本存储卡类型简介
笔记本存储卡类型简介 Memory Stick   即记忆棒,是索尼公司单独研发的新一代移动存储介质,体积为50mm×21.5mm×2.8 mm,净重4克,使用10针接口。索尼公司的全线产品,包括大屏幕特丽珑彩电、VAIO笔记本、CLIE掌上电脑、Net Walkman、DC、DV等,几乎都配备了记忆棒插槽。记忆棒有两种版本,一种是普通的蓝条,简称“蓝棒”;另一种是具备版权保护功能(即使用了MagicGate版权保护技术)的白条,简称“白棒”,一般用于索尼公司的数码随身听。 Memory Stick Duo   Memory Stick Duo存储卡体积比传统的记忆棒更小,是专为小型便携式装置设计的产品,每张
[模拟电子]
如何实现大信号输出的硅应变计与模数转换器的接口
     电桥是精密测量电阻或其他模拟量的一种有效的方法。本文介绍了如何实现具有较大信号输出的硅应变计与模数转换器(ADC)的接口,特别是Σ-Δ ADC,当使用硅应变计时,它是一种实现压力变送器的低成本方案   硅应变计   硅应变计的优点在于高灵敏度,它通过感应由应力引发的硅材料体电阻变化来检测压力。相比于金属箔或粘贴丝式应变计,其输出通常要大一个数量级。这种 硅应变计的输出信号较大,可以与较廉价的电子器件配套使用。但是,这些小而脆器件的安装和连线非常困难,因而增加了成本,限制了它们在粘贴式应变计应用中 的使用。   不过,用MEMS工艺制作的硅压力传感器却克服了这些弊病。这种MEMS压力传感器采用了标准的半导体工艺
[嵌入式]
降低ADC信噪比损失的设计技巧
本文将讨论影响SNR损失(由信号缩放引入)的主要因素,如何对其进行定量分析,以及更重要的是:如何把这种影响降至最低。   传感器或系统产生的许多信号都是双极性高压信号(如广泛使用的±10V信号)。不过,有很多简单的方法可以使这种信号通过ADC;也可以采用各种集成高压ADC解决方案:可处理这种满量程的大输入信号,而又不牺牲SNR.这些解决方案需要极高的供电电压来满足输入范围的要求,并且其功耗也相当大(图1)。这些高压ADC还缩小了信号调理(运放)解决方案的选择范围。如果信号需要与高压和低压输入组合多路复用,系统成本会大幅提升(图2)。   图1:高压ADC可适应大输入信号,但却以较大功耗为代价。为了实现这种方案,通常需要±15
[电源管理]
降低<font color='red'>ADC</font>信噪比损失的设计技巧
增量累加ADC以高24位的精确度测量小模拟信号
 一个量程10千克的秤若能分辨出1克的重量变化,那么这个秤的主要组件常常是增量累加模数转换器。设计师需要温度测量的精确度达到0.01度时,增量累加ADC也常常成为首选方案。增量累加ADC还能够取代那些前面加有一个增益级的传统型逐次逼近寄存器ADC。由于这些数据转换器非常适用于量度真实世界的微小变化,所以温度传感器、天平、换能器、流量计等精密仪器以及无数其他类型的传感器都非常适合采用增量累加ADC。   增量累加ADC表面上看起来也许很复杂,但实际上它是由一系列简单的部件所构成的精确数据转换器。增量累加ADC由两个主要构件组成:执行模数转换的增量累加调制器和数字低通滤波器/抽取电路。增量累加调制器的基本构件(集成运算放大器、求
[模拟电子]
增量累加<font color='red'>ADC</font>以高24位的精确度测量小模拟信号
msp430用ADC10来测片内温度两极管的电压
MSP430用ADC10来测片内温度两极管的电压 #include msp430x22x4.h //此程序是用ADC10来测片内温度两极管的电压 //执行程序来查看ADC10MEM寄存器的值, //并用V(temp)=0.00355*TempC+0.986公式来计算片子温度 //最后ad采样值存在ad_value,温度值存在value中,设置断点查看各个计数值 // MSP430F2274 // ----------------- // /|\| XIN|- // | | | // --|RST XOUT|- // |
[单片机]
STM32学习:ADC/DMA/USART
  学习STM32的ADC转换,在开发板上写程序调试。   四个任务:   1.AD以中断方式(单次)采集一路   2.AD以中断方式连续采集四路   3.AD以DMA方式采集一路,DMA深度为一级   4.AD以DMA方式采集四路,每路DMA深度为28级,并滤波,说明滤波原理。   总结:   第一个任务:ADC以中断方式采集一路ADC,通过配置ADC_InitStructure结构体中的ADC_ScanConvMode,它规定模数转换工作在扫描模式(多通道)还是单次模式(单通道),   ADC_InitStructure.ADC_ScanConvMode=DISABLE,为单通道单次模式。   ADC_ContinuousCo
[单片机]
带有高性能ADC的单片机C805lF060
1 引言 在混合信号单片机中,美国Cygnal公司新推出的C8051F06X系列高集成度混合信号单片机可谓一枝独秀。C8051F06X是高度集成的片上系统单片机,它有多达59个数字I/O口,采用与8051兼容的内核CIP-51,速度高达25MI/s。该系列单片机有C8051F060/2型和C8051F061/3型,与同家族的其他单片机相比,其模拟外设性能优异,除有一个带可编程放大器和多路选择器的8路10位ADC外,还有两路采样速度可达1 MS/s的16位ADC,两路12位DAC,3个电压比较器,1个片内温度传感器和参考电压源等。本文仅以C8051F060型为例,着重介绍其高速、高精度模/数转换器的使用方法。 2 高精度
[单片机]
STM32的ADC用法你都知道吗?
AD采样在电路中是一种比较常见的功能,可以用于电池电压检测、传感器值读取、信号采集等。STM32的ADC,由于引入了DMA,以及多种触发源,功能自然强大,用法也多种多样。这里简单说下单通道情况下,AD采样的几种用法。 1、AD单次转换+软件启动 最基本的用法,通过程序启动AD,AD采集一次,我们就去读一次。这种情况,建议开启AD转换完成中断,在中断中读出AD值并做处理。 这种方式的优点是配置简单,缺点么,太T么简单~ 初始化的时候,启动一次。然后在主循环里,每隔一秒启动一次。 在中断回调函数里,进行相关处理: 电脑输出如下: 2、连续转换+软件启动 在方法1的基础上做调整,从单次转换,变成连续转换。也就是说,只需要
[单片机]
STM32的<font color='red'>ADC</font>用法你都知道吗?
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved