数字信道化技术中ADC的性能分析

最新更新时间:2012-10-22来源: 互联网关键字:数字  信道化  ADC  性能分析 手机看文章 扫描二维码
随时随地手机看文章

当今,通信技术飞速发展。由于数字通信具有抗干扰能力强、信道差错可通过编码控制、通信设备易于集成化、易于对信号进行加密处理、易于与各种数字终端实现对接等特点,数字通信技术发展势头强劲。作为数字设备前端不可缺少的重要器件,模数转换器(ADC)在卫星有效载荷的应用中发挥着至关重要的作用,它将中频模拟信号转变为可进行各种处理的数字信号。在某种程度上说,ADC的性能好坏直接影响着星上处理转发器性能的发挥。因此,研究ADC对多路数字已调信号性能的影响具有重要的理论和现实意义。

  1 信道化技术

  信道化,简单地说,是指通过指定信道对通信实施管理的过程,进而可以指采用多信道传输数据的结构。信道化技术可以将同时输入的不同频率信号分开,在不同的信道内处理,以达到同时处理多个信号的目的。在卫星通信系统中,数字信道化技术是一种运用数字信号处理方法实现对多路信号灵活处理交换的技术,该技术可以在传统透明转发器下用模拟滤波器和中频交换矩阵实现对信号的处理交换,它融合了透明转发器和处理转发器的优点,是一种新型的星上信号处理技术。

  卫星通信中的数字信道化技术大致可分为三个步骤:第一,模拟信号和数字信号之间的转换,包括模数转换器(ADC)和数模转换器(DA C);第二,信号的解复用和复用;第三,星上处理,包括数字子信号的处理和交换等过程。模数转换和数模转换是数字信号处理的前提,也是信道化技术发展必须解决的首要问题。实现数字信道化的方法很多,综合起来有以下几种:解析信号法、多相/离散傅里叶变换(PDFT)法、频域滤波(FFT滤波)法、树型滤波器组(多相滤波器)法等。实现数字信道化技术的星上设备称之为数字信道器,如图1所示。其中LNA表示低噪声放大器,HPA表示高功率放大器,DC表示下变频器,UC表示上变频器,ADC表示模数转换器,DAC表示数模转换器,MCD表示多路信号分离器,MCM表示多路复用器,OBP表示星上处理。

  

 

  2 数字信道化器中ADC的性能分析

  2.1 模数转换器

  模数转换器(ADC),是实现将连续的模拟信号转换为时间离散、幅度离散的数字信号的器件。ADC在软件无线电、数据的监控采样等方面应用十分广泛,发挥着重要的作用。一般的ADC包括四个主要部分:(1)防混叠滤波器:用于滤除可通过采样而混叠进入信号带宽内的其它信号和干扰;(2)采样保持器:在数字化期间,保持输入信号不变;(3)量化编码器:在采样保持的基础上,将模拟电压转换为数字电压;(4)数字缓存器:对待输出信号进行缓存并输出信号,减轻后续器件的处理能力。ADC的基本结构如图2所示。ADC与接收机有关的重要参数还包括:量化比特位数、量化噪声、最大采样频率、最大输入功率和满量程输入范围等。

  星上数字信道化技术具有极大的灵活性和较高的通信容量,这一切都要归功于所有的处理过程都是在数字域进行的。数字信道化器前端的ADC将接收到的中频模拟信号转换为数字信号。因此,数字信道化器前端的ADC对于整个数字信道化器功能的实现和性能的发挥具有重要作用。卫星通信系统中,上行链路的射频信号下变频为中频信号后进入ADC,ADC输出的数字信号用于信道化、交换等后续处理。为了防止采样后频谱混叠,无失真地重构原信号,ADC的采样速率至少是接收信号带宽的两倍。这就要求ADC满足高速、高精度和大的线性范围的要求。其次,ADC的非均匀量化产生的量化噪声也会引起信号失真;并且,当输入信号是一系列数字已调信号时,ADC可能产生寄生信号;当输入信号的瞬时幅值超过量化器的最大线性范围时,会出现信号剪切效应。通过功率控制,理论上可以控制输入信号的功率使其不超过量化器的最大线性范围,但是实际信号具有随机性以及夹杂着随机干扰信号,使得量化器的剪切效应不可避免。因此,ADC的性能直接影响着后续信道化处理,也是实现数字信道化的重要制约因素之一。

  2.2 ADC对数字已调信号的影响

  ADC将中频模拟信号数字化后,在数字域实现信道化、交换等各种处理功能。一方面,在数字域对信号进行的处理、交换,可以采用大量集成度高的数字设备,减轻卫星有效载荷的重量,使其运行更加灵活、高效;另一方面,这种系统也会产生寄生信号,寄生信号可能来自ADC、频率综合器和数字信号处理器部分的其它子系统。寄生信号的存在会严重恶化通信系统的性能。另外,ADC本身固有的特性也会不可避免的产生量化噪声。文献对此做了详细的分析。

  宽带全球卫星系统(WGS)是美军新一代的宽带卫星系统,其星载有效载荷上采用了许多先进技术,其中就包括星上数字信道化技术。WGS卫星上的数字信道器将4.875GHz的瞬时可交换带宽划分为39个独立的信道,每个信道125 MHz,此信道又可划分为48个2.6 MHz的子信道,从而形成1 872个带宽为2.6 MHz的子信道。每个独立子信道的带宽可以从2.6 MHz等带宽地扩展到125MHz。WGS数字信道化有效载荷与传统的透明转发器不同:传统透明转发器仅仅对上行信号进行滤波、变频和放大,并不对信号进行处理交换等过程。数字信道化有效载荷与再生式处理转发器也不相同:再生式转发器要对信号进行解码、解调处理,恢复出原始信号流,转发器对其进行一定处理后,重新编码、调制、放大后送入下行信号。而WGS数字信道化有效载荷在数字域内对信号进行处理,交换前后并不对信号进行编译码和解调调制,实现方式更加灵活,是一种新型的透明数字弯管转发器。

假设ADC的输入信号为N路数字已调信号之和,仿真分析中采用的调制方式为正交相移键控QPSK,在没有干扰和噪声的情况下,ADC的输入信号可表示为:

  

b.jpg

 

  其中,Ai表示调制载波的幅度,fi表示调制载波的频率,θid表示第i个信号的数据相位调制,φi表示调制载波的初相位,θid=(2n+1)π/4,n=0,1,2,3。

  根据图1的信道模型,利用MATLAB 7.4.0软件仿真了多路相同带宽、相同功率的QPSK信号通过不同量化位数的ADC后的比特误码率性能,6路信号仿真参数设置如下:载波的频率分别取200 Hz、500 Hz、800 Hz、1 100 Hz、1 400 Hz、1700 Hz,载波的幅度为1,信号带宽为200Hz,信号保护间隔为100 Hz;图3绘出了6路信号的频谱图。

  

 

  假定ADC的最大线性范围为第一路信号幅度的最小值和最大值,即[S1min,S1max]。那么ADC对于第一路QPSK信号来说是最佳的均匀量化。然而,随着ADC量化比特位数的变化,第一路QPSK信号解调后比特误码率性能会受到影响。出现这种情况的主要原因是:虽然输入信号始终都在ADC的满量程输入范围内,但是随着ADC量化比特位数Ⅳ的减小,ADC的N比特2N阶量化电平数不足以对输入信号进行精确地量化,导致输入信号的量化误差逐渐增大,接收端解调后的错误比特数增加。图4仿真了不同量化比特位数时,对第一路信号解调性能的影响。

  

 

  

 

  由通信课程的学习我们知道,随着ADC量化比特位数N的增大,接收端解调后的错误比特数应该逐渐减少,比特误码率逐渐下降。仿真图表明:理论分析与仿真基本吻合,并且当ADC量化比特位数Ⅳ大于等于6的时候,仿真的比特误码率曲线逼近理论曲线。当Eb/No=10 dB,ADC的量化位数N大于等于4时,比特误码率小于10-5。为了进一步研究ADC量化比特位数N对输入数字已调信号性能的影响,图5绘出了ADC量化比特位数N与比特误码率之间的关系。理论上讲,仿真中随着ADC量化比特位数N不断增大,仿真曲线应该与理论曲线重合,实际仿真中发现,仿真的曲线总会和理论曲线有一定的距离。其原因可能是因为ADC固有的量化误差所引起的。

  3 结束语

  文章以美军WGS卫星上数字信道器的基本原理为背景,仿真了星上数字信道化器信号解调后比特误码率性能,分析了数字信道器前端的重要部件——ADC对传输带宽内多路数字已调信号之间的影响,提出了初步的结论。

关键字:数字  信道化  ADC  性能分析 编辑:神话 引用地址:数字信道化技术中ADC的性能分析

上一篇:如何选择模拟开关
下一篇:DIY超微型接听器(微型耳机)

推荐阅读最新更新时间:2023-10-12 20:42

优化CAN节点位时序以适应数字隔离器传播延迟
控制器局域网(CAN)由ISO 11898标准定义,广泛用于工业和汽车应用中。CAN协议(比如DeviceNet或CANOpen)依赖内置的错误检查和差分信号采样。电流隔离可进一步增强鲁棒性,能够抗高压瞬变,但会增加传播延迟。CAN节点经过优化配置,哪怕存在隔离时也具有最大数据速率和传送距离。 为什么传播延迟很重要 传播延迟会影响节点间的并发传输和仲裁。冲裁依赖于CAN信号发送;逻辑0表示“主动”(总线间的差分电压),逻辑1表示“被动”(全部输出为高阻抗),意味着主动位将覆盖被动位。发射时,所有节点监控总线;而发射被动位时则停止,从而允许另一个节点赢得仲裁(图1中的节点A)。 图1.两个节点间的仲裁 传播延迟不可过
[嵌入式]
数字电源管理架构的探讨
  随着电源技术的发展,数字电源管理技术越来越多地应用于各类系统中。当今的大多数系统除了主要的CPU、逻辑电路FPGA、DDR等数字芯片外,就只剩下电源管理芯片了,因此电源管理芯片的可控性和集成度就显得极为重要了,数字电源管理正是顺应了市场的这种需求。   数字电源管理的几种主要架构   随着电源管理技术的发展,数字电源管理逐步成为业界公认的发展方向,I2C/SMBus物理接口成为通用的标准数字电源管理接口,PMBus协议也成为通用数字电源管理协议。但是在不同的应用阶段和应用环境下,数字电源管理技术也衍化为几种不同的系统架构。   使用集中式的数字电源管理IC+模拟电源产品, 这种架构多见于几年前的设计。由于系统厂商对于电源监测和
[电源管理]
<font color='red'>数字</font>电源管理架构的探讨
带你深度温习数字I/O和逻辑分析仪常用术语
  本文介绍了数字I/O和逻辑分析仪的常用术语和定义。   1.抖动   抖动是指与事件理想时序的偏差,并通常基于参考信号的过零点进行测量。 抖动通常来自于串扰、同步开关输出和其它定期发生的干扰信号。 由于抖动会随时间变化,抖动的测量和量化既可以是秒级范围内视觉估计,也可以是基于统计的测量,比如基于标准偏差随时间变化的统计测量。      图1.数字信号抖动示例   2.偏移   对于定时(动态)生成,通道间偏移定义为两个数据通道对应边沿之间的时间差。 例如,如果两个数据通道均设置为在特定采样时从低电平转换为高电平,两个通道上升沿之间的时间差就是两个通道之间的通道间偏移。  
[测试测量]
带你深度温习<font color='red'>数字</font>I/O和逻辑<font color='red'>分析</font>仪常用术语
数字信号电平转换
单 电源 供电时,数字系统常常需要把一个不同极性的脉冲串转换成正极性或负极性的脉冲输出。本应用笔记介绍了三种简单 电路 ,可以轻松、可靠地实现数字信号电平的转换,设计中采用了MAX913比较器。 图1所示电路采用正电源供电,能够把负脉冲串转换成正脉冲输出。图中所示比较器(MAX913)可以提供同相和反相两种输出(如果系统只需要一种输出极性,可以选择单输出比较器)。比较器反相输入电压范围在1.8V至3.0V之间,选择R1 = R2,可以把比较器同相输入电压设置在2.5V,比较器的输出即为图中所示正脉冲串。 图1. 电路采用正电源供电,可接受负脉冲输入并产生两路互补的双极性输出。 图2所示电路采用负电源供电,
[模拟电子]
MSP430 ADC12模块寄存器设置解读
一。简单介绍: ADC12模块中是由以下部分组成:输入的16路模拟开关(外部8路,内部4路),ADC内部电压参考源,ADC12内核,ADC时钟源部分,采集与保持/触发源部分,ADC数据输出部分,ADC控制寄存器等组成。 四种采样模式: (1)单通道单次转换模式 (2)序列通道单词转换模式 (3)单通道多次转换模式 (4)序列通道多次转换模式 个人觉得(3)模式应该是使用较多的, 对选定的通道进行多次转换,直到关闭该功能或ENC=0。进行如下设置: x=CSStartAdd,指向转换开始地址 ADC12MEMx存放转换结果 ADC12MCTLx寄存器中定义了通
[单片机]
MSP430 <font color='red'>ADC</font>12模块寄存器设置解读
数字控制电源性能提高的设计方案
    中心议题: 数字控制电源性能提高的设计方案     解决方案: 增加智能保护功能以增强电源的可靠性 在电流限制引脚施加所需的阈值电压     在电源系统中,MOSFET驱动器一般仅用于将PWM控制IC的输出信号转换为高速的大电流信号,以便以最快的速度打开和关闭MOSFET。由于驱动器IC与MOSFET的位置相邻,所以就需要增加智能保护功能以增强电源的可靠性。     UCD9110或UCD9501等新上市的数字电源控制器需要具备新型的智能型集成MOSFET驱动器的支持。电源设计人员仍然对数字电源控制技术心存疑虑。他们经常将PC的蓝屏现象归咎于软件冲突。当然,这种争议会阻碍数字控制电源以及查找
[电源管理]
<font color='red'>数字</font>控制电源<font color='red'>性能</font>提高的设计方案
瑞萨推出领先的完全集成双输出30A和单输出33A数字电源模块
2018年1月31日,日本东京讯 - 全球领先的半导体解决方案供应商瑞萨电子株式会社(TSE:6723)今日宣布,推出两款新型完全集成的数字DC/DC PMBus®电源模块,这两款新产品提供同类最高的功率密度和效率。双输出ISL8274M可工作于5V或12V输入电压轨,提供两个30A输出和高达95.5%的峰值效率,采用紧凑的18mm x 23mm封装尺寸。新的ZL9024M可工作于3.3V的输入电压轨,输出高达33A,采用紧凑的17mm x 19mm封装尺寸。这两款器件为用在服务器、电信、数据通信、光网络和存储设备中的FPGA、DSP、ASIC和存储器提供负载点(POL)电压转换。两款器件都是易于使用、可通过PMBus配置的电源模
[半导体设计/制造]
数字D类功放噪音出现的原因及解决方法
随着电动汽车的发展,车载音响系统的信道的数量和输出功率均在逐步上升。在影音娱乐系统中,高通道数量和高输出功率的音响系统,可以产生更大的音压和动态范围,包裹感空间感更强,进而实现剧场效果的360度立体环绕声。除车载娱乐外,车载音响系统还具备许多功能。电动汽车相比传统内燃机汽车安静,为保护行人减少事故发生,所有新型电动车需要有一个发出适当声音的声学车辆报警系统(AVAS)。另外,在紧急呼叫(Ecall)系统中,音响系统可以通过触发防撞提示和车辆偏离警告,让驾驶员和紧急调度员取得联系。音响系统中包含许多部分,除喇叭外,还有功率放大器、 ADC、Codec等等。其中,D类功率放大器以高输出功率,高效率,小体积等优点,在车载音响领域异军突起
[嵌入式]
<font color='red'>数字</font>D类功放噪音出现的原因及解决方法
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved